
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1996

Kinetics and interrelation of [beta]-carotene and
canthaxanthin transport in human plasma
lipoproteins
Inke Paetau
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Nutrition Commons, and the Pharmacology Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Paetau, Inke, "Kinetics and interrelation of [beta]-carotene and canthaxanthin transport in human plasma lipoproteins " (1996).
Retrospective Theses and Dissertations. 11556.
https://lib.dr.iastate.edu/rtd/11556

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/95?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/66?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/11556?utm_source=lib.dr.iastate.edu%2Frtd%2F11556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely aflFect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note wUl indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order. 

UMI 
A Bell & Howell Information Company 

300 North Ze^ Road, Ann Aiix>r MI 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Kinetics and interrelation of (3-caroteiie and canthaxanthin transport 

in human plasma lipoproteins 

by 

Inke Paetau 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Department: Food Science and Human Nutrition 

Major: Nutrition 

Major Professor: Wendy S. White 

Iowa State University 

Ames, Iowa 

1996 

Copyright © Inke Paetau, 1996. All rights reserved. 



www.manaraa.com

UMI Number: 9712584 

UMI Microform 9712584 
Copyright 1997, by UMI Company. All rights reserved. 

This microform edition is protected against unauthorized 
copying under Title 17, United States Code. 

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48103 



www.manaraa.com

u 

Graduate College 
Iowa State University 

This is to certify that the doctoral dissertation of 

Inke Paetau 

has met the dissertation requirements of Iowa State University 

M

For the Maior Department 

r the Graduate College 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

iif 

TABLE OF CONTENTS 

1. GENERAL INTRODUCTION 

Dissertation Organization 1 
Natural Occurrence and Biological Activity of Carotenoids 2 
Carotenoids in Human Health 4 
Absorption and Transport of Carotenoids in Humans 11 
Dietary and Non-Dietary Determinants of Serum Carotenoid Concentrations 28 
Literature Cited 36 

2. DISTINCT KINETICS OF P-CAROTENE AND 
CANTHAXANTHIN APPEARANCE IN HUMAN PLASMA 
LIPOPROTEINS 

Abstract 49 
Introduction 50 
Materials and Methods 52 
Results 60 
Discussion 76 
References 84 

3. INTERACTIONS OF THE POSTPRANDIAL APPEARANCE 
OF P-CAROTENE AND CANTHAXANTHIN IN HUMAN 
PLASMA TRIGLYCERIDE-RICH LIPOPROTEINS 

Abstract 88 
Introduction 89 
Materials and Methods 92 
Results 97 
Discussion 108 
References 112 



www.manaraa.com

GENERAL CONCLUSIONS 

APPENDIX 



www.manaraa.com

1 

1. GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation is divided into four sections. The first section is a general 

introduction providing background information on the occurrence and fiinctions of 

carotenoids in both the plant and animal kingdoms. The introduction addresses aspects of 

carotenoid research and emphasizes intestinal absorption of carotenoids and lipid 

metabolism in greater detail. The second section of the dissertation is a manuscript 

prepared for submission to the American Journal of Clinical Nutrition. The paper 

describes the distinct kinetics of appearance of P-carotene (P,3-carotene) and 

canthaxanthin (P,P-carotene-4,4'-dione), a model oxycarotenoid, in human plasma and 

plasma lipoprotein fractions after ingestion of an oral dose. The methods used to isolate 

lipoprotein fractions and to verify their purity by sodium dodecyl sulphate polyacrylamide 

gradient gel electrophoresis (SDS-PAGE) are described. Relations of concentrations of 

cholesterol and concentrations of predominant carotenoids, retinol, and a-tocopherol in 

total plasma as well as in plasma lipoprotein fractions are discussed. Section three is a 

manuscript prepared for submission to the American Journal of Clinical Nutrition. The 

paper describes the interactive effects of concurrent ingestion of two carotenoids, P-

carotene and canthaxanthin, on the kinetics of these carotenoids in himian plasma and 

plasma lipoproteins. The fourth section is a general summary of the findings of both 
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papers and conclusions that can be derived. Cited ref^ences are included at the end of 

each section. An appendix follows as section five. 

Natural Occurrence and Biological Activity of Carotenoids 

Carotenoids are a class of lipophilic natural pigments widely distributed throughout 

the plant and animal kingdoms. In plants, they play essential light-harvesting roles during 

photosynthetic events and protect membranes against photooxidative damage by bright 

light [1,2]. Carotenoids are responsible for the striking colors of many yellow, orange, 

and red fruits and vegetables. A well-established biological function of carotenoids with at 

least one unsubstituted P-ionone ring in animals is to serve as vitamin A precursors [3]. 

Carotenoids can be divided into hydrocarbon carotenoids, carotenes, and oxygenated 

derivatives, oxycarotenoids or xanthophylls. The best known carotene is p-carotene (Fig. 

1-1) which is the orange pigment with provitamin A activity in carrot roots. Canthaxanthin 

(Fig. 1-2), the 4,4'-diketo analog of P-carotene without provitamin A activity, occurs 

naturally in the edible chanterelle mushroom Cantharellus cibarius, in crustacea, salmon, 

and the plumage of birds, including the pink flamingo [1]. The location within tissues and 

the functional properties of carotenoids are determined by the chemical and physical 

properties of the molecules. Carotenoids are located in lipophilic regions in the cell, such 

as lipid globules, crystalline structures, and inner membranes [1]. In general, carotenoids 
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are polyisoprenoid compounds with a long chain of conjugated double bonds in the central 

portion and modifications such as a six-membered ring at both ends of the molecule, e.g. 

P-carotene. Lycopene, the open-chain structural isomer of 3-carotene, is an exception. 

The polyene chain gives these compoimds their distinctive molecular shape, chemical 

reactivity, and light absorbing properties [4]. 

Figure 1-1. Structure of dll-trans ^-carotene. 

Figure 1-2. Structure of all-trans canthaxanthin ({3,3-carotene-4,4'-dione) 

The protective role of carotenoids in tissues has been attributed to their antioxidant 

activity. In the etiology of many chronic diseases, including cancer, free radical-induced 

damage is implicated. Beta-carotene is an effective antioxidant at low O2 tensions (< 20 

torr), such as found in mammalian tissues, but at higher (supraphysiological) €>2 tensions it 



www.manaraa.com

4 

can act as a pro-oxidant [5, 6], Singlet molecular oxygen ('O2) is an electronically excited 

molecule generated by photochemical reactions, or enzymatically, or by lipid peroxidation 

of biomembranes, which can be quenched (inactivated) by |3-carotene [7, 8] and other 

carotenoids [5], Carotenoids may also play a role in free radical reactions. Lim et al. [9] 

demonstrated the ability of xanthophylls (canthaxanthin, zeaxanthin, and astaxanthin) to 

act as chain-breaking antioxidants in the peroxidation of membranous phospholipids. 

Canthaxanthin inhibits peroxidation in liposomes, possibly by quenching singlet oxygen 

and other free radical species [10, 11]. 

Carotenoids in Human Health 

Generally considered to be nontoxic, 3-carotene has been applied as a colorant m 

foods, cosmetics and drugs. Its safety has been reviewed by Bendich [12], Innocuous 

hypercarotenemia may occur in individuals taking more than 30 mg p-carotene per day, 

e.g. in patients treated for erythropoietic protoporphyria and other photosensitivity skin 

disorders [13, 14]. Canthaxanthin has been used as food colorant, oral tanning agent and 

has also found some medical application in the treatment of certain photosensitivity skin 

disorders [15]. In contrast to 3-carotene, ingestion of large doses of canthaxanthin over 

prolonged periods can result in crystalline retinopathy [16] which reverses on 

discontinuation of canthaxanthin ingestion [17]. 
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Carotenoid research in relation to human health gained immense interest when 

epidemiological studies indicated that increased intake of vegetables and fi:uits, which 

contain high concentrations of carotenoids, and elevated blood concentrations of 3-

carotene were associated with reduced risk of some types of cancer, especially lung cancer 

[18-23], It is not clear if P-carotene or other prominent carotenoids are responsible for the 

protective eflfects observed in epidemiological studies or if the carotenoids are simply 

indicators for recent vegetable and fruit intake [24], and thus for other potential protective 

phytochemicals or for low-fat diets or other healthy lifestyles. It is speculated that 

carotenoids may act as antioxidants preventing free radical and reactive-oxygen induced 

tissue damage implicated in carcinogenesis. 

Carotenoids other than P-carotene may be responsible for observed protective 

effects. Despite high cigarette smoking rates, lung cancer incidence is lower on the Rji 

islands compared to other countries of the South Pacific with comparable smoking rates 

[25], In this study, intake of the oxycarotenoid, hitein (P,E-carotene-3,3'-dioI), was found 

to explain 14% of the variability in incidence. Increased consumption of dark-green, leafy 

vegetables was inversely related to Iimg cancer incidence [25, 26], These commodities are 

good sources of lutein as well as of p-carotene. A study conducted in Italy showed a 

protective effect of raw tomato intake against cancers of the digestive tract [27]. The 

prominent carotenoid in tomatoes is lycopene which has no provitamin A activity but has 

been shown to have strong antioxidant activity [5], In a recent study by Giovannucci et al. 

[28] it was found that lycopene was the only carotenoid intake that had a significant 

inverse trend with risk of prostate cancer. Overall intake of finaits and vegetables was not 
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related to risk of prostate cancer, and tomato-based food products were the only high-

carotenoid foods related to risk with tomato sauce having the strongest inverse 

association. 

There is also evidence that the risk of other age-related degenerative diseases, such 

as cardiovascular disease, immime-system decline, and cataracts is increased in 

populations with poor antioxidant status and low intake of fruit and vegetables [29-34], 

The Eye Disease Case-Control Study [34] demonstrated a significant 43 % reduction in 

risk for age-related macular degeneration (AMD) among people in the highest quintile of 

carotenoid intake compared with those in the lowest quintile. Among specific carotenoids, 

the strongest association with a reduced risk for AMD was found for lutein and zeaxanthin 

^^Wch are primarily obtained from green, leafy vegetables. In terms of food items, a high 

intake of spinach or collard greens was associated with a lower risk for AMD. These 

findings are particulariy interesting considering that lutein and zeaxanthin are selectively 

accumulated in the retina from the plasma. Lutein and zeaxanthin as the dominant 

pigments in the macula may serve as antioxidants to protect the retina from photo-

oxidative damage. 

Observational studies cannot establish a cause-and-effect relation, primarily 

because of the difficulty of confoimding frictors. Clinical intervention trials are necessary 

to establish "true" relations between purified food constituents and chronic diseases. 

During the past few years, several micronutrient and carotene intervention trials have been 

completed. The findings of these intervention trials are, in general, not consistent with a 

protective effect of p-carotene supplementation. A notable exception is a large study 
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conducted in China in a remote, nutritionally deprived area with one of the world's highest 

rates of esophageal and stomach cancer [35], In this intervention trial, which ran for SY* 

years, it was found that subjects taking a combination of P-carotene (15 mg/d), a-

tocopherol (30 mg/d), and selenium (50 |ig/d) had a significant reduction in mortality fi-om 

stomach cancer, total cancer and all causes combined. A subpopulation of older subjects 

from the same treatment group had a significant 44% reduction in nuclear cataract. 

Extrapolation of these findings to a well-nourished Western society with different ethnic 

background may not be valid. 

Surprisingly, P-carotene failed to show protective effects against lung cancer in the 

Alpha Tocopherol Beta-Carotene Prevention Study (ATBC Study) conducted in Finland 

[36], The male subjects were at high risk for lung cancer because they were cigarette 

smokers who had smoked an average of 20.4 cigarettes/day for an average of 35.9 years. 

Subjects taking 20 mg p-carotene/day for 6 years had a statistically significant 18% 

increase in lung cancer incidence. Mortality due to ischemic heart disease was also 

increased in the P-carotene group. 

When these results were published, two large trials were still ongoing in the United 

States, the Physicians' Health Study (PHS) and the P-Carotene and Retinol Efficacy Trial 

(CARET). The PHS, which extended over 12 years and terminated in December 1995, 

randomly assigned participants to either take 50 mg P-carotene on alternate days or 

placebo. The study population, 22,071 male physicians aged 40-84 y, consisted primarily 

of "healthy" non-smokers, and was thus a low-risk population. The results indicate neither 
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beneficial nor harmful eflfects of ^-carotene supplementation on cancer rates or 

cardiovascular disease [37], Of the study population, 11 % were current smokers and 39 

% were former smokers at time of enrollment in the study. Among current and former 

smokers, there were no significant differences between the ^-carotene and the placebo 

group in any of the end points studied, such as lung cancer incidence, numbers of deaths 

fi'om cancer, deaths fi'om any cause, deaths fi'om cardiovascular disease, incidence of 

myocardial in&rction, and stroke. Among the participants who were smokers at the time 

of enroUment in the study, the relative risk of lung cancer was 0.90 for the P-carotene 

group as compared with the placebo group. 

The subjects in the CARET study were at high-risk of lung cancer, either because 

they were current smokers or former smokers or because they had occupational exposure 

to asbestos. The trial was prematurely terminated in January 1996 after 4 years when 

preliminary results showed possible adverse eflfects comparable to those observed in the 

Finland study. The treatment of 30 mg P-carotene and 25,000 lU retinol per day in the 

form of retinyl pahnitate resulted in a statistically significant 28% increase of lung cancer 

and 17% increase of total mortality [38]. 

Focusing on the remission or suppression of premalignant lesions is a good 

approach to study the cancer preventive activity of micronutrients or other compounds. A 

clinical trial conducted to test the eflBcacy of |3-carotene (25 mg/d for 4 years) in 

preventing colorectal adenoma, a precursor of invasive cancer, did not find any effect in 

preventing new colorectal adenomas in patients with a histoiy of past adenomas [39]. 
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Supplementation with 50 mg ^-ca^otene/day for five years had no eflFect on the occurrence 

of new basal or squamous cell carcinoma in well-nourished patients with previous skin 

cancer [40], However, reversal of oral leukoplakia, a premalignant lesion of the oral 

cavity, upon supplementation with 3-carotene was observed in several studies [41-43]. 

Is the final conclusion that P-carotene supplementation is harmful and dietary p-

carotene not responsible for the protective effect observed with high fiuit and vegetable 

intakes? The current recommendation for cigarette smokers is to avoid |5-carotene 

supplements [CARIG Annual Meeting, 4/14/96, Washington, DC], but intake of P-

carotene in form of Suits and vegetables does not impose harm to smokers. The findings 

of the above mentioned large intervention trials definitely alarmed lay people as well as the 

scientific community. But a closer look at the results of the Finland study reveals that the 

increase of lung cancer in the ji-carotene group was primarily evident among men with 

higher alcohol consumption suggesting an interaction of alcohol and P-carotene[44], 

which was reported in earlier studies [45,46], In addition, a lower risk of lung cancer was 

observed in men with higher levels of both serum and dietary p-carotene at baseline, 

suggesting that these subjects had higher intakes of fiuits and vegetables, and thus of 

carotenoids, for a prolonged period exceeding the period of p-carotene supplementation. 

Epidemiological studies indicate that lifetime intake of diets rich in phytochemicals, 

including carotenoids, prevents rather than cures cancer. Cancer development is a 

multiple-step process occurring over a (life-)long time period, so that late intervention 

with preventive compounds is ineffective in stopping the process. Studies are necessary to 
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determine if supplementation with ^-carotene and other carotenoids is beneficial during 

the early stages of cancer development; theoretically younger subjects should be recruited 

and followed over several decades. 

The epidemiological evidence for a protective effect of dietary intakes of 

carotenoids, and thus of vegetables and fruits, against limg and other cancers is 

consistently strong. A recent review by Ziegler et al. [47] discusses in detail the evidence 

for the relation of nutrition and lung cancer. Despite the negative outcome of the ATBC 

Study and the other large intervention studies which do not indicate beneficial effects of 3-

carotene supplementation, carotenoid research needs to continue. It may be that dietary 

levels are protective but that pharmacologicai doses might be harmfiil. There is still much 

to leam about the effects and metabolism of carotenoids and interrelations with other 

nutrients and/or diet constituents. 

Most of the earlier epidemiological studies relating vegetable, fiuit, and carotenoid 

intakes with risk of certain diseases focused on P-carotene or total carotenoids provided 

with the diet. Often plasma concentration were measured by spectrophotometry which 

provides concentration values for total carotenoids but not for specific ones. With the 

recent reevaluation of fiuits and vegetables for contents of individual carotenoids and the 

generation of a carotenoid food composition database [48] it is now possible to look at 

correlation between dietary intake of specific carotenoids and disease indices. For certain 

diseases, the association of reduced risk with increased intake of specific carotenoids was 

stroller for lutein or lycopene than for |3-carotene. Lutein was associated with a 

decreased risk of lung cancer [25, 26], and it was the only carotenoid that had a strong 
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inverse relation with reduced risk of AMD [34]. Increased intake of lycopene was 

associated with reduced risk of prostate cancer [28] and cancers of the digestive tract 

[27]. These findings emphasize the importance of learning about the metabolism and mode 

of action of carotenoids other than P-carotene. 

The association of vegetable and fruit consumption with reduced risk of 

degenerative diseases is strong and may involve other protective phytochemicals besides 

carotenoids, such as flavenoids, phenols, isothiocyanates and others. The importance of 

these dietary phytochemicals cannot be easily assessed in epidemiological studies because 

of a paucity of data regarding contents of these compounds in specific foods. Plasma 

carotenoids reflect recent intake of fiuits and vegetables and may therefore serve as 

biomarkers for intake of other protective compounds present in the diet in order to 

identify low-risk individuals and to validate self-reported finit and vegetable intakes. 

The evaluation of specific carotenoids as protective agents requires knowledge of 

their distinct metabolism. The present dissertation will contribute to the understanding of 

intestinal absorption and metabolic interrelation of carotenoids in humans. 

Absorption and Transport of Carotenoids in Humans 

There are significant species differences in lipoprotein and carotenoid metabolism; 

therefore no good animal model exists to replace a human study. Most species convert (3-



www.manaraa.com

12 

carotene extensively to retinoid metabolites in the small intestine and virtually none is 

absorbed intact [49]. For example, chicks and rats are efficient converters of p-carotene to 

retinoids, and thus do not acamiulate intact p-carotene in their tissues. Chicks selectively 

absorb ojQfcarotenoids, cats are unable to convert 3-carotene to vitamiti A, and adult 

cattle accumulate mostly intact P-carotene and seem to absorb it specifically. Humans and 

non-human primates indiscriminately absorb intact oxycarotenoids and hydrocarbon 

carotenes and accumulate these carotenoids in tissues [50, 51]. The preruminant calf has 

been postulated to be an appropriate animal model for the study of carotenoid uptake and 

tissue distribution because preruminant calves absorb both oxycarotenoids and 

hydrocarbon carotenes [52]. The calf model has a limitation in that the plasma lipoprotein 

profiles are different for humans and calves. Whereas humans have an average low-density 

lipoproteinihigh-density lipoprotein (LDLiHDL) ratio of 1.1:1, calves have a ratio of 1:8. 

Preruminant calves carry the majority of plasma carotenoids in the HDL fiaction, with a 

small amount associated with LDL [52], \^^ereas, in humans, the m^ority of hydrocarbon 

carotenes is associated with the LDL Section [53-55]. The ferret is another animal model 

that has been applied for the study of uptake and tissue distribution of carotenoids [56-

58]. Ferrets may be discriminate accumulators because low serum canthaxanthin 

concentrations were reported in ferrets after daily mgestion of 50 mg/kg body weight [59] 

A study by White et al. [60] revealed that serum accumulation of P-carotene exceeded that 

of canthaxanthin in ferrets and a concurrent dose of canthaxanthin antagonized the serum 

appearance and tissue distribution of an equal dose of 3-carotene. In humans, a concurrent 
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dose of canthaxanthin did not affect the serum appearance of P-carotene, but P-carotene 

inhibited the appearance of canthaxanthin in serum [61], These apparent species 

differences emphasize the importance of studying metabolism of diverse carotenoids in the 

organism of interest, in our case, the human. 

Information on the intestinal absorption of carotenoids in humans is mostly limited 

to plasma appearance curves following a test dose. The movement of carotenoids and 

metabolites from the luminal content in the small intestine into the lymphatic or portal 

systems can be defined as absorption. Factors influencing the efSciency of absorption are 

[66]: 

* idiosyncrasy 
* food matrix 
* fat content of the meal 
* formation of mixed miceUes, i.e. presence of bile salts 
* uptake of carotenoids by enterocytes 
* packaging of carotenoids into lipoproteins and transport to the lymphatic system. 

Several studies have suggested that individuals on identical diets have different 

serum increments in response to equimolar doses of P-carotene, suggesting the existence 

of responders and non-responders [62-64]. Nierenberg et al. [62] reported that the best 

predictor for response was the initial plasma P-carotene concentration. In a study by 

Wahlqvist et al. [65], the existence of gender differences was observed in regard to the 

relation between baseline serum P-carotene concentrations and change in serum 

concentrations after ingestion of a P-carotene dose. In men, the baseline serum P-carotene 

concentrations were correlated with changes in serum concentrations, whereas, in women, 

the baseline serum P-carotene concentrations were not related to changes in serum 
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concentrations. Kostic et al. [138] found that the P-carotene response to an oral P-

carotene dose was not predictive of the serum response to other carotenoids, in tiiis case 

lutein. In their study, subjects who would have been classified as non-responders relative 

to their intestinal 3-carotene absorption showed good responses to a dose of hrtein. 

Erdman et al. [66] reviewed dietary and non-dietary fectors affecting carotenoid 

absorption in humans. In general, purified ^-carotene and P-carotene fi-om processed 

foods have a higher bioavailability than similar amounts present in raw, uncooked 

vegetables resulting in varying absorption rates in the range of 1-50%. Since carotenoids 

are lipophilic compounds, concurrent ingestion of fat &cilitates intestinal carotenoid 

absorption. Most investigators state that fet is essential for the absorption of p-carotene, 

whereas others observed limited absorption when the P-carotene dose was ingested with a 

no-fat or low-fat diet [64, 67-69]. The latter findings suggest that the chylomicron-

lymphatic transport of P-carotene may not be the only pathway for utilization and that 

endogenously secreted fet may play a role in absorption of P-carotene with a fet-fi-ee diet. 

The formation of bile micelles occurs when a critical miceUar concentration (CMC) 

of bile acids and phospholipids is achieved. The aggregation of bile salts into micelles, and 

the formation of mixed micelles with the products of lipid digestion and other lipid-soluble 

food constituents are essential in Volitating the absorption of lipophilic compounds fi'om 

the intestine. Micelles are sufficiently soluble to allow the transport of fat-soluble 

compounds through the aqueous environment and unstirred water layer in the small 

intestine. At the brushborder, micelles interact with the enterocytes and the lipophilic 
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contents of the micelles difSise out of the micelles and across the cell membrane. 

Hollander and Ruble [70] demonstrated that bile salts are necessary for micellar 

solubilization of p-carotene, but once the CMC is reached, further increase in bile salt 

concentration does not increase the P-carotene absorption rate in rats. It is believed that 

the uptake of carotenoids by the enterocyte occurs passively and is not carrier-mediated. 

The P-carotene absorption rate remained linear as concentrations of the P-carotene dose 

were varied from 0.5-1 IjiM [70]. Newly absorbed fatty acids with more than 14 carbon 

atoms are re-esterified into triacylglycerols (TG) in the enterocyte. These resynthesized 

TGs, together with fet-soluble vitamins and probably carotenoids, are collected in the 

cell's endoplasmic reticulum where they acquire apolipoproteins and are then finally 

assembled into chylomicrons in the Golgi apparatus. Chylomicrons then migrate to the 

basal-lateral cell membrane where they are exocytosed into the intracellular space for 

passage to the lymphatic system. Since P-carotene appears simultaneously in lymph with 

newly absorbed dietary fat, it is assumed that P-carotene follows the same route during 

absorption in the enterocyte. 

Lipoproteins secreted by the enterocyte during the fasting state carry endogenous 

lipids [71]. These lipoproteins, which are called intestinal very low density lipoprotein 

(VLDL), may be responsible for P-carotene absorption after ingestion of a P-carotene 

dose with a no-fat meal or no meal at all. Experiments by Ockner and Jones [72] 

supported the theory that lymph VLDL contain endogenous lipid which is reabsorbed 

from the intestinal lumen. They demonstrated that cholestyramine administration (a bile 
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sequestrant) or bile diversion resulted in decreased lymph lipid output with a marked 

reduction in VLDL. The intestinal VLDL resembled plasma VLDL in composition, 

Svedberg flotation rate (Sf), and electrophoretic mobility. 

Tso and Fujimoto [73] propose two pathways for the formation of chylomicrons 

and intestinal VLDL. By administering Pluronic-L81 (a hydrophobic surfectant) to rats 

they were able to inhibit formation of intestinal chylomicrons, but not of intestinal VLDL 

particles. Intraduodenal infusion of phosphatidyl choline resulted in the lymphatic 

transport of VLDL and was not affected by Pluronic-L8l. They hypothesized that 

absorbed fatty acids and fatty acids derived from the hydrolysis of absorbed 

lysophosphatidyl choline are used to form triglyceride via the a-glycerophosphate pathway 

which is then packaged mostly into VLDL particles. During lipid absorption in the fed 

state, the monoacylglycerol pathway is the predommant pathway for triglyceride formation 

from absorbed 2-monoacylglycerol (2-MG) and fatty acids. If little or no 2-MG is present 

in the enterocyte, the a-glycerophosphate pathway becomes the more important pathway 

for triglyceride formation. 

The type of dietary fat has an effect on lymph lipoprotein particle size and lipid 

content. Feldman et al [74] demonstrated in a rat model that lymph chylomicron particle 

size and lipid content were greater with an unsaturated-&t diet. Feeding specific fatty 

acids revealed that saturated fatty acids appeared primarily in VLDL and unsaturated fatty 

acids were recovered in chylomicrons. If we assume the existence of two pathways, 

perhaps locally separated, for the formation of chylomicron and VLDL particles, it might 
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be that carotenoids that differ in hydrophobicity, e.g., P-carotene and canthaxanthin, are 

pr^erentialiy packaged in one of the two lipoprotein particles. 

One of the integral apolipoproteins present in chylomicron and VLDL particles is 

apolipoprotein B (apo-B) which is essential for the assembly of these lipoproteins. Apo-B 

does not exchange between lipoprotein particles, it remains associated with the same 

lipoprotein particle in the circulation [75, 76]. In humans, apo-B48 is exclusively 

associated with chylomicrons, and thus is of intestinal origin, whereas apo-B 100 is 

primarily synthesized in the liver and thus associated with VLDL and LDL [77, 78]. Apo-

B100 is the ligand that mediates the clearance of LDL from the circulation by interaction 

with LDL receptors. Apo-B48 is essential for chylomicron formation. 

Both apo-B proteins are products of a single gene, the aminoterminal half of apo-

BlOO shows colinearity with apo-B48 [79]. The intestinal apo-B mRNA undergoes 

posttranslational cytosine deamination resulting in the production of an in-frame stop 

codon and translation to apo-B48 [79-82]. Higuchi et al. [80] were able to detect two 

distinct apo-B mRNAs in both human intestine and liver. One apo-B mRNA coded for 

apo-B 100 and the second mRNA contained an in-frame stop codon that provides the 

mechanism for the biosynthesis of apo-B48. But human liver appears to secrete almost 

exclusively apo-B 100 suggesting that the predominant apo-B mRNA in hepatic tissue 

contains the whole coding sequence resulting in translation to apo-B 100. It has been 

shown that human intestine secretes both apo-B48 and apo-B 100 [81], Intestinal biopsies 

from two normal subjects indicated that 84 ± 3 % of intestinal apoB mRNA encoded apo-

B48, while 16 ± 3 % coded for apo-B 100. But the majority of newly synthesized intestinal 
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apo-B protein was apo-B48, only 3-5 % being apo-BlOO under the study conditions, 

indicating increased degradation of apo-B 100 mRNA. The secretion of apo-B 100 with 

intestinal VLDL by human intestine may lead to the formation of intestinal apo-BlOO 

remnants which resemble LDL particles. 

We need to be aware of the feet that it is not possible to distinguish between 

intestinal VLDL and hepatic VLDL, because th^r carry the same apo-B protein, BlOO, 

and they resemble each other in composition and Sf rates. The increase in triglyceride-rich 

lipoprotein (TRL) apo-B concentrations during postprandial triglyceridemia has been 

shown to be due to an increase in both TRL apo-B48 and apo-B 100 concentrations [83-

85], Since the contribution of intestinal VLDL is considered to be insignificant [81], the 

postprandial increase in VLDL apo-B 100 after a fiit load is thought to be due to VLDL of 

hepatic origin. In one study the increase in the number of TRL was to 80 % explained by 

an increase in the number of VLDL particles estimated by an increase in apo-B 100 

concentration [84]. But considering the massive triglyceride load of each chylomicron 

particle, most of the postprandial lipemia was accounted for by apo-B48 containing 

particles. The increase in VLDL may be explained by the preferential metabolism of 

incoming chylomicron particles by lipoprotein lipase because it is believed that ©cogenous 

triglyceride, associated with chylomicron particles, compete with endogenous triglyceride, 

associated with VLDL, for a common, saturable, plasma triglyceride removal system 

related to lipoprotein lipase [86]. 

Not all TRL are metabolized in the same manner; TRL are a heterogeneous class 

of lipoprotein particles with distinct sites of synthesis, structure and metabolism. The 
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VLDL metabolism involves hydrolysis of core triglycerides by lipoprotein lipase, resulting 

in particles of decreasing size, enriched in cholesterol and protein which could end up in 

LDL, so that VLDL serves as a precursor for LDL. Even within the VLDL fraction there 

exists substantial heterogeneity. In terms of Svedberg flotation rates (Sf), VLDL particles 

are classified in a range of Sf 20-400. It has been reported that the postprandial increase in 

VLDL particles was primarily due to an increase in large VLDL (Sf 60-400 apo-BlOO), 

whereas the plasma concentration of small VLDL (Sf20-60 apo-BlOO) was not affected 

by an oral &t load [84]. In the study it was proposed that large VLDL compete with 

chylomicrons for a common lipolytic pathway, and that chylomicrons are rapidly cleared 

fi'om the plasma, indicating that smaller intestinal lipoproteins do not primarily originate 

from larger Sf > 400 chylomicrons, but are instead secreted directly into the Sf 20-400 

firaction and subsequently converted to smaller remnants. 

By subfi-actionation of the VLDL fi-action (Sf 20-400) it may be possible to 

ehicidate the fete of the different-sized VLDL particles. In a study by Packard et al. [87] 

using radioactively-labeled apo-BlOO they demonstrated that particles fi'om the Sf 100-400 

flotation range were monoexponentially converted into Sf 12-100 particles, which are 

considered intermediate density lipoproteins (DDL). Less than 10 % of the Sf 12-100 

Section ended up in LDL, the remaining 90 % were slowly cleared by the liver. Further 

subfi"actionation of the Sf 12-100 revealed that the Sf 40-60 flotation interval contained 

particles that decayed slowly and were not converted to LDL. The Sf 20-40 lipoproteins 

were more rapidly and completely converted into LDL than the Sf 40-60 particles. Their 
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conclusion was that apo-B in LDL is mostly derived from small VLDL \diich are excluded 

from the large-VLDL particle fraction (Sf 100-400). 

Retinyl esters have been used as markers for intestinal lipoproteins because it is 

believed that they remain associated with chylomicrons during triglyceride hydrolysis and 

are taken up by the liver within the chylomicron remnants [88, 89], Dietary retinol is 

absorbed by the enterocyte and esterified by transacylation from, predominantly the a-

position of phosphatidyl choline Gecithin), by the action of Iecithin:retinoI acyltransferase 

(LRAT) [90], The resultant retinyl esters are then incorporated into chylomicrons and 

released into the lymph. Chylomicron remnants containing the esters are taken up by the 

liver and retinyl esters are either stored in the hepatic tissue or resecreted in form of retinol 

bound to retinol binding protein. The normal liver does not resecrete esterified retinol. 

Berr and Kem [88] estimated the ecchange of retinyl esters with other lipoproteins to be 

iosignificant. They demonstrated that 4.3 % was transferred from chylomicrons to other 

lipoprotein classes during in vitro incubation for 5 h. During 12 h post-dosing in human 

subjects, only 6.4 ± 1.5 % of the retinyl palmitate absorbed was found in the LDL fraction 

and 3.1 ± 3.8 % in the higher density lipoproteins. 

Recently, the usefiilness of retinyl esters as a marker for intestinally derived 

lipoproteins has been questioned because retinyl esters have been detected in LDL and 

HDL particles [91]. In this study, the investigators detected 34 % of plasma retinyl esters 

in the LDL fraction at baseline. In the first 6 h postprandially, retinyl esters were mostly 

associated with the TRL fraction (75 %) and less than 10 % were found in LDL. After 9 

and more hours, retinyl esters increased gradually in LDL and 5 % were detected in HDL, 
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which could be of intestinal origin. The source of the retinyl esters in the LDL fraction is 

not known. Since LDL is believed to originate from the catabolism of smaU VLDL 

particles the authors hypothesized that retinyl ester-containing LDL derived from apo-

BlOO-containing lipoproteins of intestinal origin, or the liver secretes retinyl ester within 

apo-BlOO-containing VLDL, or the esters are transferred to LDL from other lipoproteins. 

The authors concluded with the recommendation that retinyl esters should not be used as 

markers for intestinal TRL and that apo-B48 is better suited to identify intestinal 

lipoproteins. 

Another interesting observation in the study by Krasinski et al. [91] was that the 

mean plasma triglyceride and apo-B48 concentrations peaked at 3 h after the meal, 

whereas the mean plasma retinyl ester concentration peaked at 6 h in TRL. This delay in 

plasma retinyl ester concentration peak has been reported by others [89]. Apo-B48 peaked 

at 3 h postprandially, i.e. the highest number of new chylomicron particles occurs in the 

plasma at this point, indicating that the incorporation of retinyl esters into chylomicrons in 

the enterocyte must be delayed. 

Nonprovitamin A carotenoids are not cleaved to retinoids within the enterocyte 

and are thus absorbed intact in himians. The present study will follow the kinetics of two 

carotenoids, one provitamin A and one nonprovitamin A carotenoid, in the m '̂or 

lipoprotein classes and VLDL subfractions and will thus add to the body of knowledge 

about transport and time course of carotenoids in lipoproteins. Alternatively to intact 

carotenoid intestinal absorption, provitamin A carotenoids can be converted to retinoid 

metabolites in the enterocj^e. A tracer study has shown that 64% of absorbed 
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carotene entered the plasma as retinyl esters, 21% as retinol, and 14% as intact P-carotene 

[92], Similar results were found in earlier studies using radioactive P-carotene where 8-

17% of administered radioactivity was recoverable in lymph, of which 2-28% accounted 

for 3-carotene, and 61-90% of absorbed radioactivity was detected in form of retinyl 

esters [93, 94]. 

It is not known how carotenoids are transported from the brush border membrane 

to the cell organelles. The existence of specific intracellular transport mechanisms can not 

be ruled out Hollander and Ruble [70] examined the effect of different fetty acids on the 

absorption rate of (3-carotene and they showed that the rate was higher when the meal 

contained short- and medium-chain fatty adds compared to long-chain polyunsaturated 

fatty acids (LCPUFAs). The decreased |3-carotene absorption in presence of LCPUFAs, 

which have high binding aflSnities for fetty add binding proteins (FABP), may be due to 

competition between the carotenoid and LCPUFAs for binding to FABPs. FABPs may 

serve as a transport vehide for 3-carotene through the aqueous cytosol. In a recent study, 

Gugger and Erdman used bovine liver and intestine to study the possible cytosolic protein-

mediated carotenoid transfer between liposomes and mitochondria in vitro [95]. They 

were not able to demonstrate transfer of 3-carotene under the experimental conditions and 

conduded that cytosolic intracellular transport of 3-carotene is not mediated by proteins. 

They hypothesized that intracellular movement of carotenoids may occur by vesicular 

transport or by membrane-bcimd proteins. 
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Chylomicrons and intestinal VLDL are transported through the lymphatic system 

to the thoracic duct which empties into the subclavian vein and enters the main circulation. 

As the blood circulates, Upoprotein lipase, located at the luminal surface of the 

endothelium and fat ceQs, acts repeatedly on the chylomicrons removing most of the 

triacylglycerols and leaving chylomicron remnants which are quickly taken up by the liver. 

Carotenoids transported in chylomicrons can find their way into hepatic and extrahepatic 

tissues by virtue of chylomicron catabolism. In hepatic tissue, P-carotene can either be 

stored, converted to retinol, or repackaged into VLDL and released into the circulation. 

Under festing conditions all hydrocarbon carotenes are carried predominantly by 

LDL, whereas, among the xanthophyUs, cryptoxanthin is equally distributed between LDL 

and HDL, and lutein plus zeaxanthin are primarily associated with HDL [53-55], A recent 

study explained these distribution patterns with the solubility characteristics of polar and 

apolar carotenoids in biological emulsions [96], The oxycarotenoids were preferentially 

solubilized in phospholipids, whereas the hydrocarbon carotenes preferentially solubilized 

in triglycerides. So that oxycarotenoids can be expected to be associated with lipoproteins 

with a high phospholipid/apolar lipid mass ratio such as found in HDL. 

The ^pearance of P-carotene in serum after ingestion of a single dose is biphasic 

with an initial peak at 4-7 h post-dosing and a second, larger peak at 24-48 h post-dosing 

[61, 69], The early postprandial rise in serum P-carotene had been attributed to 

chylomicron influx and the removal of chylomicron remnants by the liver results in 

disappearance of p-carotene [69, 97], The P-carotene peak increment in the VLDL 

fraction occurring at 6 h exceeded the coinciding peak in the chylomicron fraction [69] 
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which could be due to contamination of the VLX)L fraction with chylomicron remnants or 

intestinal input of smaU chylomicrons. The latter is the more likely explanation because 

chylomicron remnants are rapidly cleared from the plasma by the liver having a half-life of 

several minutes [88]. The second peak, occurring at 24 to 48 h post-dosing, was 

associated with the LDL fraction probably due to hepatic secretion of VLDL particles 

which are converted to LDL particles by action of lipoprotein h'pase. 

A study by Kiibler [98] reported on the pharmacokinetics of a single canthaxanthin 

dose in serum. Two or more canthaxanthin peaks were observed in the combined 

chylomicron plus VLDL fraction within 8 h post-dosing. \^thin 5 h post-dosing, the 

canthaxanthin concentration in LDL exceeded that in chylomicron plus VLDL, and peaked 

approximately 8 h post-dosing. The observed rapid increase of canthaxanthin content in 

the LDL fraction may result from either transfer from chylomicrons or incorporation into 

intestinal VLDL particles which are subsequently metabolized to LDL [61]. White et al 

[61] attributed the monophasic appearance of oxycarotenoids in serxmi to coincident peaks 

of the carotenoids in TRL and LDL. 

It is not known if carotenoids exchange between lipoprotenis. Certain 

apolipoproteins, cholesterol, and phospholipids are able to transfer spontaneously among 

different lipoproteins, whereas more hydrophobic lipoprotein components, such as 

cholesterol esters and triacylglycerols require specific transfer proteins. The interchange of 

lipids between circulating lipoprotein particles is facilitated by the plasma enzymes 

lecithinrcholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) 

[75], Borel et al. [96] studied the behavior of polar and apolar carotenoids in a model of 



www.manaraa.com

25 

pfaospholipid-stabilized triglyceride emulsions. They demonstrated that zeaxanthin, a 

carotenoid with two hydroxyl groups, was preferentially solubilized. in the surface 

phospholipids while P-carotene was preferentially solubilized in the core triglyceride. They 

also showed that the more polar carotenoid was transferred between a model emulsion 

and mixed micelles without triglyceride lipolysis, while the apolar carotenoid absolutely 

required triglyceride lipolysis to be transferred. They therefore suggested that polar 

carotenoids located at the lipid droplet's sur&ce can spontaneously transfer. 

These findings suggest that transfer of polar carotenoids between TRL and other 

lipoproteins may occur, which could explain the early rise of polar carotenoids in VLDL 

and LDL. Tocopherols are readily transferred firom HDL to LDL and VLDL without the 

involvement of lipid transfer proteins [99]. In contrast, Romanchik et al. were not able to 

show transfer of a-tocopherol and carotenoids among lipoproteins when plasma was 

incubated in vitro [100]. ff we assume that canthaxanthin is not ©cchanged between 

lipoproteins, the rapid increase in LDL-canthaxanthin may result fi'om incorporation into 

intestinal VLDL which undergo subsequent catabolism to LDL [61]. The analysis of the 

VLDL fraction for apolipoproteins B48 and B100 would provide information on the 

source of carotenoids in the early carotenoid rise. It is very possible that intestinal VLDL 

entering the circulation are catabolized to LDL without being first internalized by the liver 

which could explain the rapid rise of canthaxanthin in the LDL fraction if canthaxanthin is 

incorporated into intestinal VLDL. 

Another interesting point regarding intestinal carotenoid absorption is the apparent 

discrimination between geometrical isomers of carotenoids, i.e. trans and ds isomers, as 
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they occur in the diet and human tissues. The geometrical isomers can be interconverted 

by light, thermal energy or chemical reactions [101]. Despite the vast number of possible 

configurations, only a limited number are preferentially formed. For example, P-carotene 

primarily exists in the all-trans, 9-cis, 13-cis and 15-cis forms [4], It is not known if 

geometrical isomers posses isomer-specific functions. In human plasma, the prominent 

isomer is all-trans p-carotene and less than 5 % of total P-carotene occurs as ds isomers, 

especially 13- and 15-cis P-carotenes with 9-cis P-carotene being absent fi-om plasma. In 

tissue, greater than 60 % of total P-carotene is found as all-trans, 10-20 % as 13- and 15-

cis, and 10-20 % as 9-cis P-carotene [102]. 

Several investigators studied the serum response to the ingestion of an isomer 

mbcture of all-trans and 9-cis P-carotene fi-om a natural source [103-105]. The ratio at 

which the two isomers appear in plasma did not reflect the composition of geometrical 

isomers in the dose. The 9-cis isomer was either not detected in serum or showed a slight, 

statistically not significant increase which did not reflect the ingested isomer ratio. The 

carotenoid pattern in chylomicrons revealed preferential accumulation of all-trans p-

carotene over its 9-cis isomer [104]. These data suggest that the isomer discrimination 

occurs in the enterocyte, either specific uptake, or incorporation into lipoproteins. Cis-

trans bioisomerization in lumen or enterocyte has also been indicated to occur in humans 

[106]. An animal study, done in ferrets, demonstrated that both all-trans and 9-cis were 

absorbed equally well through the lymphatic system after intestinal perfiosion [107]. The 

investigators did not observe preferential transport through lymph regardless of the isomer 



www.manaraa.com

27 

perfused, but no 9-cis 3-carotene was detectable in ferret serum. They observed hi^ 

intestinal afSnity for 9-ds P-carotene and suggested that, after its absorption, 9-cis 3-

carotene undergoes more rapid peripheral tissue uptake than the all-trans isomer. After 

perfusion with 9-cis P-carotene a rise in 9-cis retinoic acid was observed. The conversion 

of 9-cis P-carotene to 9-cis retinoic acid had been shown before [108, 109]. The high 

concentration of 9-cis P-carotene in hepatic tissue may also be due to isomerization of all-

trans P-carotene. The mechanism responsible for the high ds-isomer content in tissues 

needs to be elucidated. 

In contrast, discrimination of vitamers and stereoisomers of tocopherol occurs 

postabsorptively at the level of hepatic VLDL secretion [110, 111]. The vitamers, y- and 

a-tocopherol, and the stereoisomers, RRR- and SRR-a-tocopherols, are equally well-

absorbed from the intestinal lumen and secreted within chylomicrons into lymph, but 

subsequently RRR-a-tocopherol is the prominent stereoisomer in plasma. After the 

internalization of chylomicron remnants, containing both isomers by the liver, a-

tocopherol becomes preferentially incorporated into VLDL for secretion into the plasma, 

whereas y-tocopherol is excreted by the liver via bile. Tocopherol-binding protein (TBP) 

has been isolated from rat and human hepatocytes [112-114]. It has been suggested that 

the TBP, which binds specifically RRR-a-tocopherol, is responsible for hepatic 

discrimination of tocopherols by preferential incorporation of RRR-a-tocopherol into 

nascent VLDL [115, 116]. 
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Dietary and Non-Dietary Determinants of Serum 
Carotenoid Concentrations 

Serum carotenoid concentrations are not homeostatically controlled by the human 

body, they show inter-individual variation over a wide concentration range. Table 1-1 

shows reported raises of the predominant carotenoids, retinol, and a-tocopherol in 

human serum [117-119], Dietary intake is a m^or determinant of serum carotenoid 

concentrations with seasonal variations reflecting the diet [24,120-122]. The highest 

serum jJ-carotene concentrations have been observed in fell, whereas the highest dietary 3-

carotene concentrations occurred in summer [122]. This contradiction may be related to 

the increased amount of light exposure during the summer months, because 

photodegradation of carotenoids has been shown to occur in humans [123]. No seasonal 

variation of plasma a-tocopherol was observed [122]. 

Table 1-1. Reference ranges of serum carotenoids, retinol, and a-tocopherol in humans. 

(imol/L 

NHA>JESin[117] Kaplan etal. [118] 
Stacewicz-

Sapuntzakis et 
al.[119] 

Lutein/Zeaxanthin 
P-Cryptoxanthin 
Lycopene 
a-Carotene 
3-Carotene 
Retinol 
g-Tocopherol 

0.16-0.72 
0.05-0.38 
0.13-0.82 
0.02-0.22 

0.09-0.91 

0.23-1.21 
0.01-0.40 
0.07-1.39 
1.12-3.25 

11.61-40.17 

0.08-0.79 
0.04-0.49 
0.03-1.32 
0.00-0.21 

0.05-1.29 
1.31-4.45 
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In general, women have higher plasma concentrations of a- and P-carotene, p-

cryptoxanthin, and lutein plus zeaxanthin, ^ereas men have higher concentrations of 

retinol [118], There were no significant differences in the concentrations of lycopene and 

a-tocopherol in men as compared to women. Lower serum carotenoid concentrations 

have been reported to be related to alcohol consumption, smoking, high body mass index 

(BMI), and low serum cholesterol concentrations [124-127], A recent study showed that 

the differences in serum carotenoids between women and men, smokers and non-smokers, 

and with alcohol consumption were of similar extent as the differences in carotenoid 

intake in these groups, suggesting that observed differences are due to diet and not to an 

effect of these Actors on carotenoid absorption and metabolism [127]. In contrast, serum 

carotenoids but not dietary carotenoids were related to BMI, HDL and non-HDL 

cholesterol. Significant positive correlations between total plasma carotenoids and plasma 

total- and LDL-cholesterol have been reported in earlier studies [118, 122, 128, 129], and, 

addressing individual carotenoids, lycopene [129, 130] and lutein/zeaxanthin [131] appear 

to be more highly correlated with total- and low-density lipoprotein-cholesterol than 3-

carotene. In contrast to plasma a-tocopherol and retinol, P-carotene and lycopene were 

not correlated with total plasma lipids [54, 131]. 

Since carotenoids are excellent singlet oxygen quenchers and additionally have the 

ability to react with peroxyl radicals involved in lipid peroxidation [5, 7-9], 

supplementation with P-carotene may be beneficial in reducing oxidative stress in 

organisms. Of concern is the possible effect that supplementation with one specific 

nutrient might have on the serum level of other micronutrients. Results fi'om two large 
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trials show that long-term oral supplementation with P-carotene does not have a 

detrimental effect on serum a-tocopherol concentrations [132, 133]; in feet, significantly 

increased a-tocopherol concentrations were observed at the end of the intervention 

period. 

Results fi-om studies that examined the effect of 3-carotene supplementation on 

oth^ serum carotenoids are not consistent. A study examining the accumulation of 3-

carotene in serum and skin observed that with the highest P-carotene dose administered 

(100 mg / 3 times per day) the serum concentrations of other carotenoids would decrease 

[67]. In a random sample of subjects from the participants in the Physicians Health Study 

it was found that 50 mg P-carotene on alternate days did not affect the plasma 

concentrations of other carotenoids or tocopherols [134]. But differences in cellular 

concentrations of carotenoids in peripheral blood mononuclear cells (PBMNC) and red 

blood cells (RBC) after supplementation were observed. In the placebo group, lutein was 

the most abundant carotenoid in PBMNCs and RBCs, whereas in the supplemented group 

lutein was second to P-carotene in PBMNCs and a statistically non-significant decrease in 

lutein concentrations was observed in both PBMNCs and RBCs. Wahlqvist et al. [65] 

reported statistically significant increases in serum concentrations of lycopene and a-

carotene, besides the expected increases in P-carotene concentrations, after 

supplementation with 20 mg of P-carotene for 24 months. They hypothesized a common 

pathway for absorption of lycopene, a-carotene, and P-carotene, all of which are 

hydrocarbon carotenes, that may be different from that of oxycarotenoids. 



www.manaraa.com

31 

Supplementation with P-carotene may boost the absorption pathway so that the 

absorption of other carotenes may be elevated. Another possible explanation is a sparing 

effect. It is plausible that 3-carotene and other hydrocarbon carotenes may be able to 

substitute for each other in biological functions, so that supplementation with ^-carotene 

may suppress the utilization or catabolism of other carotenoids with preferential use of 3-

carotene. An increase in serum a-carotene concentrations upon supplementation with 

purified P-carotene was observed in previous studies [135, 136]. 

Reduced plasma lutein concentrations were observed upon supplementation with 

purified P-carotene, suggesting a competition of the two carotenoids during mtestinal 

absorption [135, 136]. The eflEects might be different vdien the carotenoids are ingested in 

the form of food and not as purified compounds. In a study reporting on the plasma 

carotenoid response to daily intake of P-carotene in the form of a single supplement of 

selected foods or purified P-carotene m the context of a controlled low-carotenoid diet it 

was observed that ingestion of P-carotene supplement in the form of a selected food did 

not interfere with the appearance of dietary lutein in plasma, whereas a reduced 

concentration of lutein in plasma was observed for the group that ingested an equivalent 

amount of P-carotene as a purified P-carotene supplement relative to the placebo group 

[136]. 

The pilot study for the current study was the first human metabolic study that 

addressed specifically the interrelation of a hydrocarbon carotene and an oxycarotenoid 

after concurrent ingestion of an equimolar dose of P-carotene and canthaxanthin [61] , In 
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this study, the peak serum concentration of canthaxanthin was reduced by concurrent 

ingestion of an equimolar j3-carotene dose to 61% of the value for canthaxanthin when 

administered in absence of 3-carotene. The appearance of P-carotene in plasma after an 

oral dose was not antagonized by concurrent ingestion of an equimolar canthaxanthin 

dose. In contrast, in a ferret model, it was demonstrated that concurrent dosing of p-

carotene and canthaxanthin antagonized the serum appearance of p-carotene [60]. Tissue 

P-carotene concentrations were also lower in the ferrets that received the combined dose 

compared with the group receiving a single dose of P-carotene. These apparent species 

differences stress the importance of human metabolic studies when studying human 

metabolism. 

A recent study, also using a ferret model, found that canthaxanthin 

supplementation resulted m significantly higher a- plus P-carotene concentration in 

hepatic tissue compared with the placebo group [137], Concentrations of a-tocopherol in 

liver and lungs and of lutein/zeaxanthin in adipose tissue were significantly lower in ferrets 

fed canthaxanthin compared with the placebo group. Depending on the specific tissue 

assayed, the effects of canthaxanthin supplementation on other carotenoids and 

micronutrients demonstrated either synergistic or antagonistic relations. The ferret as a 

model to examine intestinal absorption and tissue distribution of carotenoids in hnmans 

might not be ideal because it appears the ferret is not an indiscriminate absorber of 

carotenoids. In ferrets, serum accumulations of P-carotene exceeded those of 
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canthaxanthin after an equimolar dose, whereas in humans the opposite has been observed 

[61]. 

The postulated theory of interaction between P-carotene and lutein during 

intestinal absorption was supported by the finding that concurrent administration of an 

equimolar dose of 3-carotene and lutein inhibits the appearance of lutein in serum, which 

was shown by a reduction of the mean area imder the curve (AUC) for lutein to 54-61% 

of its value when given alone [138]. The effect of lutein on p-carotene response showed 

broad interindividual variation with individual AUC values for p-carotene showing fivefold 

enhancement to 69 % reduction compared with the AUC values after a single dose of P-

carotene without lutein, so that the mean AUC values for P-carotene were unaffected by 

the presence of lutein. Subjects with low P-carotene AUC values after a single dose of P-

carotene, showed increased AUC values for P-carotene after a combined dose of P-

carotene and lutein. One possible explanation is that subjects with low P-carotene AUC 

values after a single dose are efiBcient converters of P-carotene to vitamin A in the 

intestinal mucosa, i.e. little P-carotene is absorbed intact and appears in serum, and that 

lutein might inhibit the conversion so that more intact P-carotene is absorbed. An enzyme 

responsible for conversion of provitamin A carotenoids in the intestinal mucosa is P-

carotene-15,15'-dioxygenase. Ershov et al [139] demonstrated that lutein, lycopene, and 

astaxanthin, all of which are nonprovitamin A carotenoids, can form enzyme-

pseudosubstrate complexes and inhibit the enzyme competitively. 
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The observed interrelations between carotenoids in humans may be confined to 

occurrence between hydrocarbon carotenoids and ojtycarotenoids. The findings fi'om the 

above mentioned studies examining effects of combined doses of P-carotene plus 

canthaxanthin and ^-carotene plus lutein [61,138] were consistent, an oral dose of P-

carotene reduced the appearance of the dose of the oxycarotenoids in serum. A recent 

study was not able to d^onstrate an effect of a combined dose of ^-carotene and 

lycopene, two hydrocarbon carotenoids, on the serum response of either carotenoid [140], 

The response to combined ingestion of carotenoids may be markedly different 

when mixtures of carotenoids are ingested in food. A recent study by DePee et al. [141] 

compared serum P-carotene and retinol responses of lactating women with marginal 

vitamin A status to a dark-green leafy vegetable serving and an enriched wafer, both of 

which provided the same amount of P-carotene. The serum P-carotene concentration 

increased by 17 % in the vegetable group, whereas in the wafer group, the increase was 

390 %. The retinol status of the women in the wafer group improved and no significant 

change was observed for the vegetable group. The authors give several potential 

explanations for these observations, one of which is that con^etition of P-carotene with 

other carotenoids present in the vegetable supplement may have inhibited P-carotene 

absorption and conversion to retinol. Of course, the food matrix is a very complex entity 

and it might be that specific carotenoids are located in different compartments within the 

cell making them more or less available. Dark-green leafy vegetables usually contain high 

concentrations of lutein, which is more hydrophilic than P-carotene, and thus may be 
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better bioavailable and already be present in the enterocyte once P-carotene has been freed 

from the food matrix and absorbed by the enterocyte. Possible interaction of lutein and P-

carotene in the enterocyte may reduce the bioavailability of the carotenoids and/or the 

conversion of P-carotene into retinoids. 

If we think back to the discussion on carotenoids in human health, especially the 

epidemiological studies reporting a reduced risk of lung cancer with high intakes of 

carotenoids, it was found that especially lutein showed strong association with the risk of 

limg cancer [25, 26]. In light of the recent findings regarding interaction of purified P-

carotene and lutein, i.e. the diminished appearance of lutein in serum after concurrent 

ingestion of the two carotenoids, it could be speculated that the results of the Finland 

study, i.e. increase in lung cancer incidence with P-carotene supplementation (20 mg/day) 

in male smokers, are due to reduced utilization of lutein in the presence of purified P-

carotene. For more discussion on possible explanations of the negative outcome of the 

latest intervention trials the reader is referred to the recent review by Ziegler et al. [47], 

Because other carotenoids are potentially preventive agents it is implicit that their 

metabolism is understood and possible interaction with other micronutrients are explored. 

Since it is believed that uptake of carotenoids by the enterocyte is via passive diffiision 

[70], the apparent interactions of specific carotenoids are likely to occur within the 

enterocyte. Possible sites of interaction or competition could be at the level of P-carotene-

15,15'-dioxygenase, as discussed above, or at level of incorporation of carotenoids into 

intestinal lipoproteins. The present dissertation will contribute to the knowledge of 
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interaction between hydrocarbon carotenes and oxycarotenoids during intestinal 

absorption by investigating the kinetics of the qjpearance and disappearance of single and 

combined oral doses of P-carotene and canthaxanthin in plasma and plasma triglyceride-

rich lipoprotein subfractions. 
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2. DISTINCT KINETICS OF 3-CAROTENE AND CANTHAXANTHIN 
APPEARANCE IN HUMAN PLASMA LIPOPROTEINS 

A Paper to be submitted to the American Journal of Clinical Nutrition 

Inke Paetau, Huiping Chen, Natalie M.-Y. Goh, and Wendy S. White 

Abstract 

The kinetics of single equimolar doses of jJ-carotene and canthaxanthin (47 [imol 

and 44 ^mol, respectively) in plasma and plasma lipoproteins were investigated and 

compared in healthy premenopausal women. The lipoproteins were separated by 

cumulative rate ultracentrifiigation which isolated four subfractions of trigiyceride-rich 

lipoproteins (TRL) with progressively decreasing diameter and increasing density, i.e. 

chylomicron and three very-low density lipoprotein (VLDLA, B, and C) fractions, and 

also intermediate density lipoproteins (IDL), and low density lipoproteins (LDL). In 

plasma, P-carotene kinetics were biphasic with a minor peak increment at 5 h post-dosing 

(0.36 ± 0.06 |imol/L), aft«" which concentrations fell and then increased again to a larger 

peak at 48 h post-dosing (0.82 ± 0.21 jimol/L). The minor plasma peak coincided with 

peak P-carotene increments in TRL. The major peak was associated with appearance of P-

carotene in LDL. The peak increment at 6 h in VLDLA (0.12 ± 0.05 pimol/L) exceeded 

that in chylomiCTons (0.07 ± 0.03 |imol/L) although the apolipoprotein profile by sodium 
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dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was not consistent with 

significant contamination of VLDLA by chylomicron remnants. Plasma kinetics of the 

oxycarotenoid, canthaxanthin, were monophasic with a peak increment at 12 h post-

dosing (1.41 ± 0.11 imioI/L) followed by a steady decline. Canthaxanthin increments 

peaked at 6 h post-dosing in chylomicrons and VLDLA (0.17 ± 0.03 (jmol/L and 0.21 ± 

0.04 nmol/L, respectively), whereas the peak increment was delayed m VLDLB and 

VLDLC to 8 h post-dosing. There was a rapid canthaxanthin accumulation in LDL which 

began 2 h post-dosing. It is concluded that concurrent increases of canthaxanthin in TRL 

and LDL are responsible for the observed monophasic plasma canthaxanthin response and 

may thus account for the monophasic response of other oxycarotenoids. Rapid 

postprandial accumulation of oxycarotenoids in LDL, in contrast to delayed appearance of 

P-carotene, may have profound health implication if we consider that carotenoids other 

than P-carotene may potentially exert beneficial effects as antioxidants. 

Introduction 

Carotenoid research in relation to himian health gained interest when 

epidemiological studies indicated that intake of carotenoid-rich fiuits and vegetables and 

elevated blood concentration of P-carotene were inversely associated with risk of some 

types of cancer, particularly lung cancer [1,2]. The carotenoid investigated and associated 
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with beneficial effects was 3-carotene, although fiuits and vegetables are also sources of 

other carotenoids. 

Recent findings fi-om large intervention trials in Western populations are not 

consistent with a protective effect of P-carotene supplementation [3-7], Carotenoid intake 

in the form of fioiits and vegetables continues to be recommended as dietary levels of p-

carotene, other carotenoids, other phytochemicals, or associated food patterns may 

account for the consistent protective associations in observational studies [2]. 

Oxycarotenoids such as lutein, zeaxanthin, and cryptoxanthin are present in the diet, and, 

as a result, in serum and tissues. A stronger relation of lutein intake than of P-carotene 

intake with reduced risk of limg cancer was recently reported [8,9], Lutein-rich foods are 

also associated with a lower risk of age-related macular degeneration [10], Lutein and 

zeaxanthin are selectively accumulated fi'om plasma in the retina where they may protect 

firom photooxidative damage in their action as antioxidants. Thus distinct metabolism of 

individual carotenoids may have important health implications. 

This study investigated the kinetics of a model oxycarotenoid, canthaxanthin, and a 

hydrocarbon carotene, P-carotene, in intestinal- and hepatic-derived lipoproteins after 

ingestion of single equimolar oral doses of each carotenoid. Individual carotenoids show 

metabolic heterogeneity that is reflected in their lipoprotein distribution. Plasma 

carotenoids are transported in lipoproteins with the majority of hydrocarbon carotenes 

associated with low density lipoproteins (LDL) and the oxycarotenoids approximately 

equally distributed among LDL and high density lipoproteins (HDL) [11-14], Triglyceride-

rich lipoproteins (TRL) are a heterogeneous class of lipoprotein particles with distinct 
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sites of synthesis and metabolism [15-18]. The very-low density lipoprotein (VLDL) 

fraction is defined as having Svedberg flotation rates (Sf) of20 - 400 [15]. It was shown 

that smaller VLDL particles (Sf 20-40) are almost completely converted to LDL in the 

circulation by action of hepatic triglyceride lipase, \\iiereas larger VLDL particles are 

hydrolyzed by lipoprotein lipase and cleared by the liver [16]. Chylomicrons secreted by 

the enterocyte have flotation rates of Sf > 400. The possibility that the intestine is also 

secreting smaller sized particles (Sf < 400) has been proposed [17]. In light of the 

heterogeneity of VLDL particles, we separated the TRL into four subfi^ctions to be able 

to reveal distinct kinetics of 3-carotene and the oxycarotenoid, canthaxanthin, in different 

lipoprotein particles after ingestion of a single oral dose. 

Materials and Methods 

Subjects. Ten healthy, non-smoking, premenopausal women aged 20-36 y 

participated in the study. Subjects underwent a screening procedure that included a health 

and lifestyle questionnaire, physical examination, and complete blood count and blood 

chemistry profile. Criteria for exclusion were: history of chronic disease, lipid 

malabsorption or intestinal disorders, use of medications that may affect lipid absorption 

or transport (including antibiotics), hyperlipidemia indicated by plasma lipid and 

lipoprotein profile, lactose intolerance, history of anemia or excessive bleeding, history of 

photosensitivity disorders, history of eating disorders, hyper- or hypothyroidism indicated 

by serum thyroxine (T4) and thyroid stimulating hormone (TSH), menstrual cycle 
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irregularities or abnormalities, current or planned pregnancy, use of oral contraceptive 

agents, current use of vitamin or mineral supplements, vegetarianism, current or recent 

cigarette smoking, and frequent consumption of alcoholic beverages (> 1 drink/day). 

Before enrollment in the study, the subjects were instructed to complete a three-day 

written food record to screen for unusual dietary behaviors, such as restrained eating and 

vegetarian diet. Percent body &t at the commencement and the termination of the study 

was determined by total-body electrical conductivity (TOBEC, EM-SCAN Inc., 

Springfield, IL). Informed consent was obtained from all subjects, and the study 

procedures were approved by the Human Subjects Research Review Committee of Iowa 

State University. 

A total of twelve subjects participated in the study. Subject ten met the diagnostic 

criteria for hypolipidemia [19] and her data were excluded from the statistical analyses and 

calculations of the mean area under the plasma concentration-time curves. Subjects eleven 

and twelve were excluded because they did not complete the third period of the study. 

Diet. Subjects were provided a list of foods to exclude and instructed to avoid 

consumption of carotenoid-rich fruits and vegetables for 5 days before each study period. 

During the dosing periods, the subjects consumed a controlled low-carotenoid diet for 1 

day before and 4 days after dosing. A single daily menu of weighed food portions was 

provided. The meals were prepared and consumed in the Human Nutrition Metabolic Unit 

of the Center for Designing Foods to Improve Nutrition at Iowa State University except 

for the cany-out lunches and evening snacks on weekdays. Duplicate aliquots of a 24-

hour diet composite were analyzed by high perfonnance liquid chromatography (HPLC) 
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for carotenoid, retinol, and a-tocopherol contents during each study period. The 

extraction of the 24-hour food composite foUowed the protocol described previously [20], 

On average, across three study periods, the diet provided 504.8 ± 52.8 ng/d lutein, 18.9 ± 

0.4 |ig/d ciyptoxanthin, 145.3 ± 8.6 ng/d P-carotene, no detectable a-carotene and 

lycopene, 591.7 ± 64.6 ng/d retinol, and 5.5 ± 0.2 mg/d a-tocopherol. The macronutrient 

composition of the diet was estimated using Nutritionist IV software (N-Squared 

Computing Inc., Salem, OR). The daily diet of 8.8 MJ was distributed as 14% of total 

energy from protein, 63% of total energy from carbohydrates, and 23% of total energy 

from fat. 

Carotenoid dose. Water-dispersible 10% (wt:wt) P-carotene, 10% canthaxanthin, 

and placebo beadlets were provided by Hoffinann-La Roche (Nutl^, NJ). Canthaxanthin 

is the naturally occurring color pigment in the chanterelle mushroom, in crustacea, and in 

wild salmon; synthetic canthaxanthin is approved as a food colorant in the United States 

[21]. Canthaxanthin is one of three carotenoids approved for human ingestion and is 

commercially available as a water-miscible palatable formulation. Limited data suggest 

similar kinetics with other oxycarotenoids [22]. For the preparation of the dose providing 

25 mg (47 |imol) P-carotene or 25 mg (44 |imol) canthaxanthin, 250 mg of the respective 

beadlets were dissolved in 100 ml of warm whole milk (40®C) to which 296 ml cold whole 

milk were added. Results presented here are part of an interaction study investigating 

effects of concurrent ingestion of equimolar amounts of p-carotene and canthaxanthin on 

their individual plasma kinetics. To compensate for the vehicle effect, when administering 



www.manaraa.com

55 

the single dose, an equal amount (250 mg) of placebo beadlets was added. The carotenoid 

dose in milk (396 ml) containing an estimated 13 g &t was administered with the break&st 

containing an additional 20 g &t to facilitate intestinal absorption. 

Stû  protocol During each of three five-day study periods, subjects ingested 

either a 3-carotene or canthaxanthin dose, separated by a washout period of ten or more 

weeks to minimize residual effects of the previous carotenoid dose. On the day of dosing, 

the second day on the low carotenoid diet, subjects arrived at the metabolic unit after an 

overnight (12-hour) fest, and a baseline blood sample (7 ml) was drawn via a catheter 

placed in a forearm vein by a registered nurse. After administration of the carotenoid dose, 

followed by the breakfast, blood samples were drawn at hourly intervals for 12 h post-

dosing via the intravenous catheter into a syringe. The patency of the catheter was 

maintained by flushing with sterile physiological saline; 3 ml of sterile saline was iryected 

after each blood draw and withdrawn immediately before the next blood collection. 

Additional blood samples were drawn from the antecubital vein via venipuncture after an 

overnight fest at 24,48, 72, 96, 192, 360, and 528 h post-dosing. The blood samples were 

immediately placed on ice, protected from light, and then centrifiiged (1380 x g, 4° C, 20 

min) to separate the plasma. Aliquots of the plasma were stored at -80°C until analyzed, 

except for the samples used for lipoprotein fractionation. 

Lipoprotein fractionation. Blood draws obtained at 0,2,4, 6,8, and 10 h post-

dosing from subjects 1 to 5 were used immediately for lipoprotein fractionation. 

Lipoprotein fractions were separated by cumulative rate ultracentrifiigation to obtain 

chylomicrons, three VLDL subfractions, and LDL [23]. Plasma density was adjusted to 



www.manaraa.com

56 

1.10 g/ml by additioa of solid potassium bromide (KBr) (0.14 g/ml). Four ml of plasma 

were overlayered with salt solutions of decreasing density, 3 ml each of 1.065 g/ml and 

1.020 g/ml, and 3.4 ml of 1.006 g/ml, in Beckman Ultra-Clear™ 14 x 95 mm centrifuge 

tubes (Beckman Instnmients, Palo Aho, CA). Preparation of the density solutions was 

according to Pitas et al. [24]. The SW40i swinging bucket rotor of the Beckman L8-M 

ultracentrifiige was used for the omiulative rate centrifugation at 20®C. Centrifugation 

was for 43 min at 28,300 rpm (4.5 x 10®g-min, chylomicron fraction, Sf > 400), then for 

67 min at 40,000 rpm (17.5 x 10® g-min, VLDLA fraction, Sf 175-400), then for 71 min at 

40,000 rpm (31.2 x 10®, VLDLB fraction, Sf 100-175), and finally for 18 h at 37,000 rpm 

(152 X 10®, VLDLC, Sf 20-100, and LDL, Sf 0-12, fractions). After the first three 

sequential centriiugations, each fraction was carefully aspirated from the top of the tube 

and the tube was refilled with density 1.006 g/ml salt solution. After the 18 h 

centrifugation, the gradient was fractionated from top into 2.0 ml of VLDLC fraction, 3 .0 

ml of IDL fraction, 2.5 ml of visible LDL fraction, and plasma infranatant. Procedures 

were performed in yellow light. Aliquots of the lipoprotein fractions for carotenoid 

analysis were stored at -80°C until analyzed. 

Electron microscopy of lipoprotein fractions. Negative stain technique was 

applied to determine the particle size distribution of the lipoproteins by electron 

microscopy [25]. Isolated lipoprotein fractions were dialyzed overnight at 4°C in 

Spectra/Por molecular porous dialysis membrane tubing with a molecular weight cut-off of 

12 - 14 K (Baxter Diagnostics Inc., McGaw Park, IL). The dialysis buffer (pH 7.4) 

contained 5 mM ammonium bicarbonate, 0.02% (wt:vol) ethyienediamine-tetraacetic acid 
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(EDTA), and 0.02% (wt;voI) sodium azide (NsNa). Dialyzed fractions were stained with 

phosphotungstic add (pH 7.3), a small droplet was placed on the Formvar-carbon-coated 

grid, and excess fluid was removed by blotting with a paper tissue. The LDL fraction was 

diluted with deionized water (1:4) before staining. The electron microscope (1200 EX 

STEM, JOEL, Japan) was set at 80 KV. Particle diameters were determined by image 

analysis. 

hpoUpoprotdn comp<mtion ofUpoprotdn Jractions. Apolipoproteins of the 

individual lipoprotein fractions were separated by sodium dodecyl sulphate polyacrylamide 

gradient gel electrophoresis (SDS-PAGE) [24]. To prepare the samples for 

electrophoresis, lipoprotein fractions were concentrated in Centricon-100 concentrators 

(MW cut-off 100,000, Amicon Corp., Beverly, MA). Sample (2 mL) was placed in the 

upper chamber of the concentrator, which was then centrifiiged in a fixed-angle rotor (714 

X g, 20°C, 30 min) until the desired volume was reached. The final volumes for each 

fraction were 1.0 ml of chylomicron, 2.0 ml of VLDLA, 1.2 ml of YLDLB, 1.3 ml of 

VLDLC, and 1.6 ml of LDL. Before running the gel, 0.25 ml 1% SDS and 0.25 ml 

tracking dye (3.03% Tris, 14.4% glycine, 2% sucrose, 0.05% bromophenol blue) were 

added to the concentrated fractions. The volumes of the fractions loaded onto the gel were 

-60 \il chylomicron, -60 \ii VLDLA, -40 nl VLDLB, -40 VLDLC, and -20 LDL 

with a protein content of 35 ng, 35 ng, 25 jig, 20 ng, and 20 |ig, respectively, as 

determined using a commercial assay for quantitative microdetermination of total protein 

(Sigma Diagnostics, St. Louis, MO). A 1-10 % linear gradient gel was prepared, the 

samples loaded into the wells, carefully overlayed with running buffer (3.03% Tris, 14.4% 
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glycine, 0.1% SDS) and run overnight at 45 V. A high molecular weight standard (SDS-

6H, Sigma, St. Louis, MO) was run for comparison. 

Caratenmd and lipid content ofplasma and plasma tipoproteins. Procedures 

were performed under yellow light. Following the method by Stacewicz-Sapuntzakis [26], 

duplicate 200-|il or 500-^1 aliquots of plasma or plasma lipoproteins, respectively, were 

denatured by addition of an equal volume of absolute ethanol containing 0.01% BHT and 

retinyl acetate as the internal standard. The samples were then extracted twice with hexane 

containing 0.01% BHT and the combined hexane layers were evaporated to dryness under 

vacuum. The residues were reconstituted with ethyl ether and mobile phase (1:3; volivol), 

and 20-nl aliquots were injected into the HPLC system. 

The components of the HPLC system were Waters instruments (Waters 

Chromatography, Milford, MA), and consisted of the 717Plus Autosampler with 

temperature control set at 5°C, the 510 Solvent Delivery System, and the 996 Photodiode 

Array Detector. The system operated with the Millennium 2010 Chromatography 

Manager software. Data were collected at 290, 325, and 453 nm. Separation of analytes 

was performed on a 5 ^ Nova-Pak Cig (Waters) 3.9 x 150 mm analytical column 

protected by a guard column and eluted with methanol-acetonitrile-tetrahydrofiiran 

(50:45:5) containing 0.1% ammonium acetate. Solvents were HPLC grade; methanol, 

acetonitrile, and ammonium acetate were purchased from Fisher Scientific (Chicago, IL), 

tetrahydrofuran (OmniSolv®) was purchased from Baxter (McGaw Park, IL). The mobile 

phase was filtered (Nylon-66 filter, 0.2 [im, Rainin Instruments Co., Wobum, MA) and 
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degassed before use. The flow rate was 1.0 ml/mm and carotenoids were eluted within 20 

min. 

Retinyd acetate, retinol, a-tocopherol, a-carotene, 3-carotene, and canthaxanthin 

standards were purchased from Fluka Chemical (Rx)nkonkoma, NY) and lycopene 

standard from Sigma Chemical. Lutein was donated by Kemin Industries (Des Moines, lA) 

and P-cryptoxanthin by Hoffinaim-La Roche (Nutley, NJ). Calibration curves were 

generated from the ratios of the peak height of the carotenoid standards to the peak height 

of the internal standard plotted against the carotenoid concentration. The presented 

concentrations (^ol/L) in lipoprotein fractions are based on the original volume of 

plasma used for the separation of the lipoproteins. Accuracy and precision of the analyses 

were verified using a standard reference material (SRM 968a, Fat-Sohible Vitamins in 

Human Serum) from the National Institute of Standards and Technology. Quality control 

included routine analysis of a plasma pool. Inter-assay coefiScients of variation were below 

5% for all carotenoids, retinol, and a-tocopherol. 

Total plasma cholesterol and LDL-cholesterol were measured enzymatically using 

a commercial assay from Diagnostic Chemicals Ltd. (Oxford, CT). Accuracy and precision 

were confirmed using fresh frozen human serum pools (Pacific Biometrics Research 

Foundation, Seattle, WA). Total plasma triglycerides and chylomicron-triglycerides were 

determined enzymatically using a commercial assay (Triglycerides/GPO, Boehringer 

Mannheun Corporation, Indianapolis, IN). 

Pearson correlation coefBcients were calculated to determine the relation of LDL-

cholesterol and LDL-carotenoid concentrations and of plasma total cholesterol and plasma 
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carotenoid concentrations at baseline. The post-dosing areas under the carotenoid 

concentration versus time curves (AUC) were calculated by trapezoidal approximation 

after adjustment for the baseline carotenoid concentrations. The statistical significance of 

differences between mean values were analyzed by paired t-test. 

Results 

Subject Characteristics. Table 2-1 summarizes characteristics of the individual 

subjects, such as age. Body Mass Index (BMI), and percent body fat determined by 

TOBEC. The mean (± SEM) baseline plasma concentrations of prominent carotenoids, 

retinol, and a-tocopherol for nine subjects are given in Table 2-2. 

Characteristic 
Subject Age(y) BMI (kg/m^) % Body Fat at % Body Fat at 

Start End 
1 21 19.3 24.6 24.6 
2 36 22.5 35.4 33.6 
3 32 24.2 30.5 27.4 
4 20 21.6 26.7 27.6 
5 23 25.5 36.1 35.8 
6 20 21.0 23.6 27.3 
7 21 18.7 22.1 24.3 
S 35 21.0 28.6 29.6 
9 21 28.3 34.1 35.8 
10 25 24.0 32.0 31.4 

Meant SEM 25.4 ±6.4 22.6 ±2.9 29.4 ± 5.0 29.3 ±4.3 
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The plasma carotenoid concentrations were in the normal range based on the NHANES 

in data [27], but at the lower end, which suggests good compliance with instructions to 

avoid carotenoid-rich food for 5 days prior to the study period. 

As expected, there was a significant positive correlation of BMI and percent body 

fat (r = 0.81, p < 0.01). The post-dosing areas under the concentration-time curves 

(AUCs) for 3-carotene and canthaxanthin (data not shown) were not correlated with BMI 

or percent body fat. Baseline plasma P-carotene concentrations were not correlated with 

the P-carotene AUCs. 

Particle size distribution and purity of the lipoprotein fractions. Cumulative rate 

ultracentrifugation fi-actionated plasma triglyceride-rich lipoproteins into four subfi-actions 

of progressively decreasing diameter and increasing density, i.e. chylomicrons, VLDLA, 

VLDLB, and VLDLC (Figure 2-1). The size distribution of lipoprotein particles fi-om two 

Table 2-2. Baseline plasma concentrations 
of carotenoids, a-tocopherol, and retinol. 
Values are means for nine subjects ± SEM. 

Concentration 
(|imol/L) 

a-Carotene 
3-Carotene 
3-Cryptoxanthin 
Lutein 
Lycopene 
Retinol 
g-Tocopherol 

0.15 ±0.04 
0.41 ±0.02 
0.08 ±0.02 
0.17 ±0.02 
0.42 ±0.04 
1.45 ±0.10 

15.33 ±0.51 
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Figure 2-1. Representative electron microscope photograph of chylomicrons, very-low 

density lipoprotein (VLDL) subfractions, and low density lipoproteins (LDL) isolated 

from the plasma of a normotriglyceridemic subject 6 hours after a fat-rich meal. 
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subjects (6-h postprandial samples) was determined by electron microscopy and image 

analysis. The mean diameter (± SEM) was 100.0 ± 0.0 nm, chylomicrons; 46.0 ± 2.4 mn, 

VLDLA; 37.8 ± 2.6 nm, VLDLB; 24.8 ± 3.3 nm, VLDLC; and 14.0 ± 0.1 ran, LDL. The 

purity of the fractions was evaluated by visualization of the apolipoproteins by SDS-

PAGE (Figure 2-2). Apolipoprotein B48 (apo-B48) was the major apo-B detected in the 

chylomicron fraction with a feint band of apo-B 100 present as noted by other investigators 

[28]. Apo-B48 was not detected in the other TRL fractions or in LDL. 

Plasma carotenmd concentration-time curves. The plasma increments of P-

carotene and canthaxanthin measured for 528 h after ingestion of a 25-mg single oral dose 

of either carotenoid are shown in Figure 2-3. The presented concentrations are the means 

(± SEM) of 9 subjects adjusted by subtraction of the baseline carotenoid concentrations. 

The plasma canthaxanthin increment was monophasic with a rapid increase in 

concentration to a single peak at 12 h post-dosing (1.41 ± 0.11 |imoI/L) followed by a 

steady decline to concentrations near baseline at 360 h. The plasma 3-carotene increment 

was biphasic with a minor peak at 5 h (0.36 ± 0.06 jimoI/L) after which the concentrations 

declined and then increased with a major peak at 48 h (0.82 ± 0.21 (imol/L) post-dosing. 

The P-carotene concentrations then decreased slowly to values close to baseline 

concentration at 528 h. These findings confirm the kinetics observed in an earlier pilot 

study (20). 

^Carotene and canthaxanthin kinetics in plasma lipoprotein fractions. 

Lipoproteins were isolated from the plasma of five subjects. The mean concentration-time 
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Figure 2-2. Separation of apolipoproteins B48 and BlOO by sodiiim dodecyl sulphate 

polyacrylamide gradient gel electrophoresis (1-10% gradient). The plasma lipoproteins 

were fractionated by cumulative rate ultracentrifiigation. Abbreviations: MW, standard of 

molecular weight markers; Chy, chylomicron; Va, very-low density lipoprotein (VLDL) A; 

Vb, VLDLB; Vc, VLDLC; LDL, low density lipoprotein. 
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Figure 2-3. Plasma increments after ingestion of a single oral dose of 25 mg of P-carotene or canthaxanthin. 
Concentrations shown are mean values for nine subjects ± SEM adjusted by subtraction of the respective baseline 
carotenoid concentrations. 
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curves of P-carotene appearance in the plasma lipoprotein firactions for 10 h after 

ingestion of 25 mg P-carotene are shown in Figure 2-4. There were coincident peak P-

carotene increments at 6 h post-dosing in chylomicrons and each VLDL subfraction. The 

mean peak lipoprotein P-carotene concentration increment in the VLDLA subfraction at 6 

h exceeded that in chylomicrons by a factor of 1.7 (0.12 ± 0.05 |imol/L and 0.07 ± 0.03 

^unol/L, respectively). An early decrease in P-carotene concentration was observed in the 

LDL fraction which was followed by a gradual increment starting 4 to 6 h post-dosing 

(Figure 2-5). The decrease in LDL-P-carotene concentrations coincides with an observed 

decrease in total plasma P-carotene concentrations. The timing of the P-carotene 

increment was similar in IDL and LDL; P-carotene concentrations started to rise 4 to 6 h 

post-dosing and were still increasing at 10 h. 

The mean canthaxanthin concentration-time curves in the individual lipoprotein 

fractions for 10 h after ingestion of 25 mg canthaxanthin are shown in Figure 2-4. The 

mean canthaxanthin concentration (± SEM) peaked 6 h post-dosing in the chylomicron 

and VLDLA fractions (0.17 ± 0.03 jimol/L and 0.21 ± 0.04 (imol/L, respectively). The 

canthaxanthin mean peak increment in VLDLB and VLDLC fractions occurred at 8 h 

post-dosing (0.09 ± 0.02 (imoI/L and 0.10 ± 0.03 ^rniol/L, respectively). Canthaxanthin 

concentrations in LDL started to rise 2 h post-dosing, and the increment in LDL at 6 h 

post-dosing (0.25 ± 0.05 ^unol/L) exceeded that in chylomicrons and in VLDLA In the 

IDL fraction a gradual increase in canthaxanthin concentration was observed starting at 2 

h and continuing at 10 h post-dosing. 
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Figure 2-4. Mean lipoprotein carotenoid increments (jimol/L) in the chylomicron, very-low 
density A (VLDLA), VLDLB, VLDLC, intermediate density (IDL), and low density 
lipoprotein (LDL) fractions after ingestion of a single oral dose of 25 mg canthaxanthin (O) 
or P-carotene (•). Data points presented are mean values for five subjects ± SEM. 
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Figure 2-5. LDL-3-carotene increment (fomoI/L) of a representative subject after 
ingestion of a single P-carotene dose. Note the initial decrease below baseline LDL 
concentration. 
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Figure 2-6 presents the distribution of 3-carotene and canthaxanthin increments in 

lipoproteins at three time points during 10 h post-dosing. At 4 h post-dosing, most of the 

newly absorbed carotenoids were associated with chylomicrons and VLDLA (j3-carotene, 

29.8 ±4.7% and 37.8 ±4.2%, respectively, canthaxanthin, 26.5 ± 5.3% and 29.1 ± 5.7%, 

respectively). There was no detectable P-carotene in LDL at 4 h post-dosing; interestingly, 

11.0 ± 4.6% was associated with the infranatant, which is basically HDL and plasma 

proteins. In contrast, 15.8 ± 2.3% of newly absorbed canthaxanthin appeared in LDL and 

16.5 ± 3.4% in the infranatant at 4 h post-dosing. At 6 h post-dosing, P-carotene 

increments in the infranatant were significantly greater than the increments in LDL (p < 

0.05), whereas, at 10 h post-dosing, the difference did not reach statistical significance (p 

= 0.094). Canthaxanthin increments in LDL and infranatant were approximately equal at 

each time point. At 10 h post-dosing, 32.4 ± 2.9% of newly absorbed P-carotene was 

associated with TRL (sum of individual fractions), 8.3 ± 2.9% with EDL, 19.8 ± 3.3% with 

LDL, and 39.3 ± 8.0% with infranatant. In contrast, a greater percentage of canthaxanthin 

accumulated in LDL (32.4 ± 3.6%, p < 0.05) and a lesser percentage, although the 

difference was not statistically significant, in the infranatant (30.1 ± 2.1%, p = 0.31) at 10 

h post-dosing. Lipoprotein distribution of P-carotene and canthaxanthin during the 10-h 

postprandial phase demonstrates the rapid accumulation of canthaxanthin and the delayed 

appearance of P-carotene in LDL. 

Comparing the distribution of P-carotene and canthaxanthin at 10 h post-dosing in 

lipoproteins of density > 1.06 g/mL as a group (LDL plus HDL) with triglyceride-rich 
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Figure 2-6. Distribution of P-carotene and canthaxanthin in lipoproteins at 4, 6, 
and 10 hours after ingestion of single equimolar doses. Data represent mean values 
for 5 subjects ± SEM. 
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lipoproteins as a group (chylomicrons plus VLDL subfractions) we found similar 

distribution for both carotenoids. At 10 h post-dosing, 32.4 ± 2.9% of p-carotene and 

33.3 ± 2.8% of canthaxanthin were associated with TRL and 59.0 ± 5.7% of 3-carotene 

and 62.4 ± 2.9% of canthaxanthin with higher density lipoproteins. 

distribution of carotenoids, a-tocopherol, and retinol in the lipoprotein 

fractions at baseline. The distribution of carotenoids, a-tocopherol, and retinol at 

baseline in the lipoprotein fractions is presented in Table 2-3. The hydrocarbon carotenes, 

lycopene, a-carotene, and p-carotene, were primarily (> 50%) associated with LDL, 

whereas the majority (> 50%) of the xanthophylls, lutein/zeaxanthin and cryptoxanthin, 

was foimd in the infranatant fraction which includes HDL. Retinol was 99% associated 

with the infranatant fraction, 1% was in LDL. The majority of a-tocopherol (38%) was 

recovered in the infranatant fraction, which includes HDL, and approximately equal 

amounts were distributed between VLDL and LDL, 25 and 28%, respectively. 

Table 2-3. Relative lipoprotein distribution of carotenoids, a-tocopherol, and retinol at 
baseline. Values are means for five subjects ± SEM. 

Distribution (%, Mean ± SEM) 
VLDLA VLDLB VLDLC IDL LDL Infranatant 

Lutein 4.9 ±2.3 5.6 ± LI 4.0 ± L2 5.1 ±0.4 17.0 ±2.5 62.1 ±2.6 
P-Cryptoxanthin 2.9 ± L9 2.7 ±L7 4.1 ±2.0 5.8 ±2.6 31.4 ±5.4 53.1 ±1.5 
Lycopene L5 ± 1.0 4.3 ±2.2 4.2 ± 1.8 12.0 ± 1.4 60.1 ±3.8 18.0 ±2.8 
a-Carotene 0.6 ±0.6 3.8 ±3.8 0.4±0.4 5.1 ±0.7 61.8 ±5.5 28.3 ±2.6 
P-Carotene L6 ± LO L9±0.8 1.9 ± 1.3 13.5 ±2.2 54.0 ±3.5 27.2 ±2.4 
a-Tocopherol 8.6 ±3.5 7.3 ±3.0 8.8 ±1.5 9.3 ± 1.7 28.3 ±2.0 37.6 ±7.9 
Retinol 0 0 0 0 0.8 ±0.3 99.2 ±0.3 
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Baseline correlations of carotenoid, a-tocopherol, and rednoi concentrations 

with plasma and LDL-ckolesteroL No correlation was found between the &sting baseline 

LDL concentrations of cholesterol and the concentrations of P-carotene, lutein/zeaxanthin, 

or cryptoxanthin in LDL. In our five subjects, the LDL concentrations of cholesterol 

tended to be correlated with LDL concentrations of lycopene (r = 0.60, p = 0.07) and a-

carotene (r = 0.59, p = 0.08). There was a highly significant positive correlation of 

baseline concentrations of a-tocopherol and cholesterol in LDL (r = 0.78, p = 0.008). If 

we examine the relation of concentrations of total cholesterol and of individual 

carotenoids in fasting plasma at baseline, only the correlation of plasma cholesterol with 

plasma lycopene was statistically significant (r = 0.65, p = 0.022). Plasma cholestCTol and 

plasma a-tocopherol concentrations were also positively correlated (r = 0.64, p = 0.025). 

Table 2-4 presents significant correlations of fasting carotenoid concentrations in 

LDL. Concentrations of the oxycarotenoid, lutein, were correlated with those of lycopene, 

a-carotene, and |3-carotene in LDL. The concentrations of the hydrocarbon carotenes in 

LDL, a-carotene, P-carotene, and lycopene were significantly correlated. Baseline total 

plasma concentrations of lutein were significantly correlated with those of each of the 

other carotenoids. 

Triaq̂ lglycerol kinetics in plasma and chylomicrons. Figure 2-7 shows the 

kinetics of triacylglycerol, P-carotene, and canthaxanthin in plasma and chylomicrons 

during the postprandial phase. The baseline-corrected mean (± SEM) plasma triglyceride 

curve (n = 9) has a peak increment 4 to 7 hours post-dosing (0.50 ± 0.09 mmol/L) 
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Figure 2-7. Triglyceride, P-carotene, and canthaxantfain increments in plasma 
(A) and chylomicrons (B) after ingestion of a 3-carotene or canthaxantfain dose 
with a fat-rich meal. Data represent mean (± SEM) values of nine (A) and five 
subjects (B). 
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coinciding with the initial minor peak increment of 3-carotene. The kinetics of 

triglycerides and canthaxanthin in plasma are not similar which is explained by the 

coincident increments of canthaxanthin in TRL and LDL. In chylomicrons, the mean 

triglyceride curve (n = 5) peaks 6 h post-dosing (0.02 ± 0.01 imnol/L) coincident with p-

carotene and canthaxanthin increments. 

Table 2-4. Correlations of fasting plasma carotenoid concentrations in LDL. 

Correlation p Value 
CoeflScient (r) 

LDL-Lutein and LDL Lycopene 0.66 0.05 
LDL a-Carotene 0.71 0.05 
LDL 3-Carotene 0.63 0.05 

LDL Lycopene and LDL a-Carotene 0.62 0.05 
LDL P-Carotene 0.72 0.05 

LDL a-Carotene and LDL P-Carotene 0.75 0.01 

Discussion 

The kinetics of the oxycarotenoid, canthaxanthin, and the hydrocarbon carotene, 

P-carotene, in plasma are distinct (Figure 2-3). We observed a monophasic time course for 

canthaxanthin with rapid accumulation in plasma and a peak concentration at 12 h post-

dosing, which is similar to preliminary reports of the pharmacokinetics of canthaxanthin 
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[20, 29] and other ojq'carotenoids [22, 30]. Thus canthaxanthin is a suitable model for 

study of the metabolism of oxycarotenoids in humans. 

Investigation of the kinetics of canthaxanthin in lipoprotein fractions is informative 

regarding the mechanism underlying the monophasic increment of canthaxanthin in 

plasma. There was a rapid accumulation of canthaxanthin in chylomicrons and VLDLA 

with a peak increment in the VLDLA fraction at 6 h post-dosing that exceeded that in 

chylomicrons (Figure 2-4). The inability to detect apo-B48 in the VLDLA fraction by 

SDS-PAGE (Rgure 2-2) suggests that significant contamination by chylomicron remnants 

is an unlikely explanation for the rapid canthaxanthin increment in VLDLA Canthaxanthin 

concentrations increased rapidly in the LDL fraction; the 6-h post-dosing increment in 

LDL exceeded the 6-h canthaxanthin increment in chylomicrons and in VLDLA These 

findings, the rapid increase of canthaxanthin concentrations in both TRL and LDL, 

confirm the hypothesis that the monophasic plasma increment is due to coincident peaks in 

TRL and LDL [20]. 

The early increase of canthaxanthin content in the LDL fraction may result from 

canthaxanthin transfer from TRL, incorporation into intestinal VLDL particles which are 

subsequently metabolized to LDL, or rapid incorporation into hepatic VLDL. Although 

our results are highly suggestive of canthaxanthin transfer from TRL to LDL, an in vitro 

study could not demonstrate transfer of lutein/zeaxanthin, oxycarotenoids which have 

similar polarity to canthaxanthin, among lipoprotein fractions in chylomicron-free plasma 

[31]. Canthaxanthin, an oxycarotenoid, is more polar than P-carotene and is likely to be 

solubilized preferentially in the surface phospholipids of lipoproteins [32]. Localization at 
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the surface may make oxycarotenoids prone to transfer to lipoproteins with higher 

phospholipid/apolar lipid ratios, such as LDL or HDL. Intestinal VLDL cannot be 

separated from hepatic VLDL because they have the same flotation characteristics and 

both carry apo-BlOO as their integral apolipoprotein. It is believed that the contribution of 

intestinal VLDL during postprandial lipemia is insignificant [33], and thus intestinal VLDL 

would not be expected to be a major route for intestinal carotenoid absorption. At 4 h 

post-dosing, canthaxanthin concentrations began to rise slowly in VLDLC, the fraction 

thought to contain the majority of particles which are converted to LDL [34]. The 

canthaxanthin content in LDL exceeded that in VLDLC at 4 h post-dosing, so that 

conversion of VLDLC particles into LDL does not appear to be responsible for the early 

appearance of canthaxanthin in LDL. 

The biphasic kinetics of 3-carotene appearance in plasma after a single oral dose 

were demonstrated previously [20]. The early peak occurring 4-7 h post-dosing has been 

attributed to chylomicron influx and to occurrence of P-carotene in VLDL [20], Comwell 

et al. [12] showed that the 3-carotene peak increment in the VLDL fraction at 6 h post-

dosing exceeds that in the chylomicron fraction. The investigators attributed the large 

VLDL increment to contamination of the VLDL fraction with chylomicron remnants. The 

second larger peak at 24 to 48 h post-dosing was associated with the LDL fraction and 

was attributed to hepatic secretion of VLDL particles which are converted to LDL 

particles by action of lipoprotein lipase. 

In our study we observed that the rapid postprandial plasma increment of |3-

carotene, as well as of canthaxanthin, was most marked in the large VLDL subfraction (Sf 
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175-400) (Figure 2-4). The large ^-carotene increment in VLDLA at 6 h post-dosing 

exceeded the ^-carotene increment in chylomicrons; this is consistent with the earlier 

findings of Comwell et al. [12] for total VLDL. Apo-B48, the apolipoprotein associated 

with chylomicrons, could not be detected in the VLDL subfractions by SDS-PAGE 

(Figure 2-2); Apo-B 100 was the only apolipoprotein B detected in these fiactions. An 

increase in the number of VLDL particles during postprandial lipemia has been observed 

recently by other investigators [17, 18] and was attributed to VLDL particles of hepatic 

origin. In a recent study [35], of newly absorbed 3-carotene and retinyl esters derived 

fi-om cleavage of P-carotene in TRL, it was concluded, using P-carotene and retinyl esters 

as indicators for intestinal lipoproteins, that the increase in TRL was primarily due to 

lipoproteins of intestinal origin. 

If the VLDL particles in Section A are of hepatic origin, how did the carotenoids 

accumulate so rapidly in this fraction? One could speculate that there was transfer of 

carotenoids from chjdomicrons to hepatic VLDL. This is unlikely to be the case for P-

carotene \^toch is very hydrophobic and solubilized in the core triacylglycerol of 

lipoproteins [32]. An in vitro study was unable to demonstrate transfer of P-carotene or 

other carotenoids among lipoprotein fractions during incubation of chylomicron-free 

plasma [31]. The delayed appearance of P-carotene in the LDL fraction also indicates that 

transfer is unlikely [14]. 

Since we did not detect apo-B48 in the VLDLA subfraction (Figure 2-2), we 

cannot conclude that the VLDLA fraction contains remnants from catabolism of 
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chylomicrons, i.e. removal of triglyceride by action of lipoprotein lipase. Chylomicron 

remnants with the incorporated carotenoids are quickly taken up by the liver. Berr et al. 

[34] reported mean half-lives for chylomicrons in plasma of 29 ± 16 min. In hepatic tissue, 

3-carotene can either be stored, converted to retinol, or repackaged into VLDL and 

released into the circulation, ffthe early rise of P-carotene m the VLDLA fraction is due 

to hepatic secretion of nascent VLDL particles it would imply a rapid turnover of P-

carotene in hepatic tissue. 

As discussed above, small VLDL particles (Sf 20-40), which would be found in 

VLDLC using our fractionation method, are preferentially converted to LDL. We 

observed an increase of 3-carotene concentration in the VLDLC fraction that reached a 

plateau between 6 and 8 h post-dosing. The concentration of 3-carotene in LDL started to 

rise at 6 h post-dosing coinciding with the plateau in VLDLC, indicative of steady influx 

of particles into the Sf 20-100 range fraction and subsequent conversion to LDL particles. 

It is likely that the majority of VLDLC particles are of hepatic origin and that these small 

VLDL particles are subsequently converted to LDL. 

We observed an early decrease in plasma 3-carotene concentrations below baseline 

values before concentrations began to rise at 4 to 6 h post-dosing (Figure 2-5). Addressing 

3-carotene kinetics in individual lipoprotein fractions revealed that the early decline in 3-

carotene concentrations was associated with the LDL fraction. It is plausible that 

incoming intestinal lipoproteins compete with hepatic lipoproteins for catabolism by 

lipoprotein lipase so that less hepatic VLDL particles are converted to LDL particles. 
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It is interesting to note that the triglyceride increments peaked 6 h post-dosing in 

TRL coinciding with ^-carotene and canthaxanthin (Figure 2-7). A delay of P-carotene 

peak increments was observed by VanVliet et al. [35], They observed early triglyceride 

peak increments (2 h post-dosing) and P-carotene peak increments 5 h post-dosing. These 

discrepancies may stem from the type of fat in the experimental meal. VanVliet used a 

highly unsaturated fat, whereas our subjects derived the dietary fet from dairy products, 

with a corresponding higher intake of saturated fatty acids. 

Under fasting conditions, hydrocarbon carotenes are carried predominantly by 

LDL, whereas, of the xanthophylls, 3-cryptoxanthin is equally distributed between LDL 

and HDL, and lutein plus zeaxanthin are primarily associated with HDL [11, 13,14,31, 

36, 37]. Borel et al. [32] demonstrated in experiments on the solubility of polar and apolar 

carotenoids that xanthophylls are preferentially solubilized in phospholipid, so that these 

carotenoids are expected to be associated with lipoproteins of high phospholipid; apolar-

lipid ratio such as HDL. Plasma 3-carotene has been reported to be associated 5-12% 

with VLDL, 63 - 71% with LDL, and 15 to 28% with HDL [13, 14, 37]. In studies 

investigating the relative distribution of several carotenoids, some found that the relative 

amount of plasma lycopene associated with LDL was higher than the relative amount of 

plasma P-carotene carried in LDL [14, 37]. Lycopene was found to be associated 10% 

with VLDL, 73% with LDL, and 17% with HDL [14]. The distribution of a-tocopherol is 

more equal among the lipoprotein fractions. Bjomson et al [13] found 18 -19% of plasma 

a-tocopherol associated with VLDL, 39 - 58% vwth LDL, and 33 - 43% with HDL. 
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Our data on the relative distribution of carotenoids is somewhat different to 

previous studies in that we found smaller percentages of plasma lycopene and 3-carotene 

associated with LDL; 60 and 54 respectively (Table 2-3). Discrepancies with previous 

reports may stem from different lipoprotein fractionation methods used in the studies. We 

determined the amount of the carotenoids in EDL, whereas previous reports were limited 

to VLDL, LDL, and HDL. Assuming that the IDL fraction separated in our study 

contributed to the LDL fraction in other studies, we find that our data agree well. 

Alternatively, the avoidance of carotenoid-rich foods might have had an impact on the 

relative distribution of carotenoids in lipoproteins. To our knowledge, this has not been 

studied before. Our subjects were instructed to avoid ingestion of carotenoid-rich foods 

during the week before collection of the baseline blood sample. In contrast, it has been 

shown that supplementation with P-carotene does not change its relative distribution in 

lipoproteins [13, 37], 

It is mteresting to note that plasma lycopene but not P-carotene was significantly 

correlated with plasma cholesterol in the present study. There was a tendency of lycopene 

and a-carotene in LDL to be correlated with LDL-cholesterol (p < 0.10). The correlations 

of plasma cholesterol with plasma P-carotene (p = 0.97) and of LDL-cholesterol with 

LDL-P-carotene (p = 0.28) were not significant. One possible mechanism by which 

carotenoids may exert beneficial effects on human health is via their antioxidant properties. 

Lycopene has been shown to be a more efficient singlet oxygen quencher than P-carotene 

[38] and since lycopene is transported primarily in LDL it could be speculated that it is the 



www.manaraa.com

83 

major singlet oxygen quencher in LDL-cholesterol. Recently, a metabolite resulting from 

oxidatioa of lycopene has been identified in human plasma [39], There are inconsistent 

findings regarding correlations of LDL-cholesterol with plasma carotenoids. Some studies 

demonstrate significant positive correlation of P-carotene with total plasma cholesterol 

[37,40], others fail to find significant correlations [37]. Addressing individual carotenoids, 

lycopene appears to be more highly correlated with plasma and low-density lipoprotein-

cholesterol than 3-carotene [41,42], 

The results of this study show distinct kinetics of P-carotene and canthaxanthin in 

human plasma lipoproteins. Early increments of |3-carotene and canthaxanthin in plasma 

reflect rapid incorporation into TRL; we observed early increments of P-carotene and 

canthaxanthin in both chylomicrons and VLDL. The peak P-carotene increment in LDL 

was delayed, suggesting that P-carotene is not readily transferred fi^om TRL to LDL. In 

contrast, canthaxanthin peak increments in TRL coincide with rising concentrations in 

LDL. The rapid rise of canthaxanthin concentration in LDL may be the result of influx 

fi-om intestinal VLDL particles which are subsequently converted to LDL, rapid secretion 

in hepatic VLDL followed by catabolism to LDL, or transfer of canthaxanthin fi-om TRL 

to LDL. We demonstrated the underlying mechanism for the monophasic plasma kinetics 

of oxycarotenoids, that is, coincident peak increments in TRL and LDL. Rapid 

accumulation of oxycarotenoids in LDL particles may have profound health implication if 

we consider theu- potential action as antioxidants. 
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3. INTERACTIONS OF THE POSTPRANDIAL APPEARANCE OF 
P-CAROTENE AND CANTHAXANTHIN IN HUMAN PLASMA 

TRIGLYCERIDE-RICH LIPOPROTEINS 
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Inke Paetau and Wendy S. White 

Abstract 

The effects of ingestion of a combined equimolar dose of P-carotene (47 |imoI) 

and canthaxanthin (44 |imol) with a fat-rich meal on their individual appearance in plasma 

and postprandial plasma lipoproteins were investigated in healthy premenopausal women. 

During three study periods the subjects (n = 9) ingested either an individual |3-carotene or 

canthaxanthin dose or a combined 3-carotene plus canthaxanthin dose. Blood samples 

were taken at 0 h and then hourly for 12 h post-dosing; additional blood samples were 

drawn after an overnight fast at 24,48, 72, 96, 192, 360, and 528 h post-dosing. At six 

time points, i.e. 0,2, 4, 6, 8, and 10 h post-dosing, for a subset of subjects (n = 5) plasma 

lipoproteins were separated by cumulative rate ultracentrifugation into chylomicrons, three 

VLDL subfractions of decreasing size and increasing density (VLDL A, B and C, 

respectively), IDL, and LDL. The mean plasma p-carotene concentration peaked at 5 h 

and 48 h, whereas the mean plasma canthaxanthin concentration peaked once at 12 h post-

dosing. The ingestion of a combined dose of P-carotene and canthaxanthin inhibited the 
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appearance of the canthaxanthin dose (p < 0.01), but did not significantly affect the 

appearance of the P-carotene dose in plasma. Ingestion of the combined dose significantly 

inhibited the appearance of canthaxanthin in triglyceride-rich lipoproteins (TRL), but did 

not affect the rapid accumulation of canthaxanthin in LDL at 10-h post-dosing. The mean 

(± SEM) areas under the plasma lipoprotein canthaxanthin concentration-time curves 

(AUC) were significantly reduced in chylomicrons by 37.8 ± 7.1% (p < 0.01), in VLDLA 

by 43.0 ± 8.1% (p < 0.05), in VLDLB by 32.7 ± 8.1% (p < 0.05), and in VLDLC by 30.3 

± 7.6% (p < 0.001). In contrast, concurrent ingestion of the canthaxanthin dose did not 

significantly affect the appearance of the 3-carotene dose in TRL or LDL. These results 

confirm and extend earlier reports of specific interactions of 3-carotene and the 

oxycarotenoids canthaxanthin and lutein during intestinal absorption. 

Introduction 

There is consistent epidemiological evidence for an association of high intake of 

carotenoid-rich fiioits and vegetables and high serum 3-carotene concentrations with 

reduced risk of lung cancer [1-4]. It is not clear if 3-carotene is the beneficial agent or if 

3-carotene is simply a marker for other protective dietary components, including other 

carotenoids. Recently, an oxycarotenoid, lutein, was found to have stronger associations 

with reduced risk of certain degenerative diseases than 3-carotene [5-7], High 

consumption of dark-green leafy vegetables and corresponding high lutein intake had 
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stronger association with reduced risk of lung cancer than dietary P-carotene [2]. In the 

Eye Disease Case-Control Study, men with the highest lutein intakes had significantly 

reduced risk of age-related macular degeneration [7], 

Observational studies cannot establish a cause-and-effect relation, therefore clinical 

trials are necessary to establish a direct relation between purified food constituents and 

chronic disease. Several P-carotene intervention trials have recently concluded and the 

findings of these studies are, in general, not consistent with a protective effect of P-

carotene supplementation. In these trials P-carotene supplementation had detrimental 

effects [8, 9], no effects [10-12], or beneficial effects [13, 14] on selected degenerative 

diseases. Supplementation of heavy smokers with P-carotene resulted in significant 

increases in the incidence of lung cancer [8, 9], An interaction of P-carotene with ethanol 

may be one explanation for the negative outcome in this study because the increased 

incidence of lung cancer was primarily evident among men with the highest alcohol 

consumption [15]. The serum P-carotene concentrations achieved in these studies were 

extremely high, which may have resulted in a prooxidative activity of P-carotene in the 

lung [16]. Possible negative effects of supplemental P-carotene on other micronutrients 

are another potential mechanism underlying the observed increase in risk [4]. 

Limited data suggest that hydrocarbon carotenes and oxycarotenoids are distinct in 

their intestinal absorption and metabolism. In humans, carotenes and oxycarotenoids show 

distinct kinetics [17, 18]. The oxycarotenoids, lutein and canthaxanthin, rapidly appear in 

serum and have a single peak increment 12 -16 h post-dosing, whereas P-carotene has 
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biphasic kinetics with a minor peak at 5-7 h post-dosing and a larger, sustained peak at 24 

to 48 h post-dosing. Canthaxanthin is a good tracer oxycarotenoid because it is not 

prominent in the human diet and not present in significant concentrations in human plasma. 

The kinetics of appearance and disappearance in plasma after a single canthaxanthin dose 

are comparable with the kinetics of the oxycarotenoid lutein [18] and other oxycarotenoid 

analogs [19]. 

The basis of the current investigation is a pilot study by White et al. [17] 

addressing the interrelation of a hydrocarbon carotene, 3-carotene, and the oxycarotenoid, 

canthaxanthin, after concurrent ingestion and during the appearance of each in the serum 

of human subjects. Comparison of the kinetics of a single 3-carotene or canthaxanthin 

dose with that of a combined 3-carotene plus canthaxanthin dose within each of two 

subjects indicated that the 72-h area under the serum concentration-time curve for 

canthaxanthin was reduced 34% by concurrent ingestion of an equimolar P-carotene dose. 

A recent study by Kostic et al. [18] reported inhibition of the serum appearance of lutein 

by P-carotene when the two carotenoids were ingested concurrently by human subjects. 

Concurrent ingestion of lutein and P-carotene reduced the mean area under the curve for 

lutein 39% compared to that for lutein when administered alone. Johnson et al. [20] did 

not find an inhibition of P-carotene serum appearance after concurrent ingestion of P-

carotene and lycopene, two hydrocarbon carotenes, which supports the hypothesis that 

observed interactions among carotenoids are confined to occurrence between hydrocarbon 

carotenes and oxycarotenoids [17], 
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The mechanism and site of the inhibitory effect of P-carotene is not known. Early 

inhibition observed in previous studies suggests an effect during intestinal absorption. It 

may occur in the enterocyte during incorporation of carotenoids into intestinal lipoproteins 

for transport via the lymphatic system to the circulation. The current study extends our 

knowledge of interactions of p-carotene and oxycarotenoids by investigating the kinetics 

of the appearance and disappearance of single and combined oral doses of 3-carotene and 

canthaxanthin, a model oxycarotenoid, in human postprandial plasma TRL. 

Material and Methods 

Subjects. Ten healthy, non-smoking premenopausal women aged 20-36 y 

participated in the study. Subjects underwent a screening procedure that included a health 

and lifestyle questiomiaire, physical examination, complete blood count, and blood 

chemistry profile. Criteria for exclusion were; history of chronic disease, lipid 

malabsorption or intestinal disorders, use of medications that affect lipid absorption or 

transport (including antibiotics), hyperlipidemia indicated by plasma lipid and lipoprotein 

profile, lactose intolerance, history of anemia or excessive bleeding, history of 

photosensitivity disorders, history of eating disorders, hyper- or hypothyroidism indicated 

by measured serum thyroxine (T4) and thyroid stimulating hormone (TSH), menstrual 

cycle irregularities or abnormalities, current or planned pregnancy, use of oral 

contraceptive agents, current use of vitamin or mineral supplements, vegetarianism. 
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current or recent cigarette smoking, and frequent consumption of alcoholic beverages (> 1 

drink/day). Before enrollment in the study, the subjects were instructed to complete a 

three-day written food record to screen for unusual dietary behaviors such as restrained 

eating. Informed consent was obtained from all subjects and study procedures were 

approved by the Human Subjects Research Review Committee of Iowa State University. 

A total of twelve subjects participated in the study. Subject 10 met the diagnostic 

criteria for hypolipidemia [21] and her data were excluded from the statistical analyses and 

calculations of the mean area imder the plasma concentration-time curves. Subjects 11 and 

12 were excluded because they did not complete the third period of the study. 

Diet. The subjects were instructed to avoid consumption of fruits and vegetables 

high in carotenoids and were provided a list of foods to exclude from the diet for 5 days 

before each study period. During the dosing periods, the subjects consumed a controlled 

low-carotenoid diet for 1 day before and 4 days after dosing. A single daily menu of 

weighed food portions was provided. The meals were prepared and consumed in the 

Human Nutrition Metabolic Unit of the Center for Designing Foods to Improve Nutrition 

at Iowa State University except for the carry-out lunches and evening snacks. A 24-hour 

diet composite was analyzed by high performance liquid chromatography (HPLC) for 

carotenoid, retinol, and a-tocopherol contents [17]. On average, the diet provided 504.8 ± 

52.8 |ig/d lutein, 18.9 ± 0.4 |id/d cryptoxanthin, 145.3 ± 8.6 |ig/d P-carotene, no 

detectable a-carotene and lycopene, 591.7 ± 64.6 pig/d retinol, and 5.5 ± 0.2 mg/d a-

tocopherol. The macronutrient composition of the diet was estimated using Nutritionist IV 

software (N-Squared Computing Inc., Salem, OR). The estimated macronutrient 
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distribution of the 8.8 MJ daily diet was 14% of total energy from protein, 63% of total 

energy from carbohydrate, and 23% of total energy from fet. 

Caratenoid dose. Water-dispersible 10% (wtiwt) 3-carotene, 10% canthaxanthin, 

and placebo beadlets were provided by Hofl5nann-La Roche (Nutley, NJ). Beadlets were 

used because of the commercial availability of these formulations approved for human 

ingestion [22] and because of the high bioavailability of the carotenoids [23] which would 

be expected to provide a more consistent plasma response. For the preparation of the dose 

providing 25 mg (47 nmol) 3-carotene, 25 mg (44 (imol) canthaxanthin, or a combined 

dose of 25 mg of each, 250 mg of the respective beadlets were dissolved in 100 ml of 

warm whole milk (40°C) and 296 ml of cold milk were added. For the individual dose, 3-

carotene or canthaxanthin was administered with an equal weight of placebo beadlets. The 

carotenoid dose in 396 ml whole milk (13 g fat) was administered with the standard 

breakfast containing an additional 20 g fat to facilitate intestinal absorption. 

Stu(fy protocol During each of three five-day study periods, separated by 10-week 

washout periods to minimize residual effects of the previous carotenoid dose, subjects 

ingested either a 3-carotene plus placebo dose, a canthaxanthin plus placebo dose, or a 3-

carotene plus canthaxanthin dose. On the day of dosing, the second day of the low-

carotenoid diet, subjects arrived at the metabolic unit after an overnight fast and a baseline 

blood sample (7 ml) was drawn via a catheter placed in a forearm vein by a registered 

nurse. After administration of the carotenoid dose followed by the standard breakfast, 

blood samples were drawn at hourly intervals for 12 h post-dosing via the intravenous 

catheter into a syringe. The patency of the catheter was maintained by flushing with sterile 
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physiological saline; 3 ml of sterile saline was injected after each blood draw and 

withdrawn immediately before the next blood collection. Additional blood samples were 

drawn from the antecubital vein via venipuncture after an overnight fast at 24,48, 72,96, 

192, 360, and 528 h post-dosing. The blood samples were immediately placed on ice, 

protected from light, and then centrifiiged (1380 x g, 4° C, 20 min) to separate plasma. 

Aliquots of plasma were stored at -80° C until analyzed. 

Blood draws obtained at 0, 2, 4, 6, 8, and 10 h post-dosing from subjects 1 to 5 

were used immediately for lipoprotein fractionation. Lipoprotein fractions were separated 

by cumulative rate ultracentrifiigation to obtain chylomicrons, three VLDL subfractions, 

and LDL according to the method of Redgrave et al. [24] as modified by Berr [25]. 

Procedures were performed in yellow light. Aliquots of the isolated fractions for 

carotenoid analysis were stored at -80°C until analyzed. 

Extraction and HPLC analysis ofplasma and plasma lipoproteins. Procedures 

were performed in yellow light. Duplicate 200-|iI or 500-|il aliquots of plasma or 

suspended plasma lipoproteins, respectively, were denatured by addition of an equal 

volume of absolute ethanol containing 0.01 % BPTT and retinyl acetate as an internal 

standard according to the method of Stacewicz-Sapuntzakis et al. [26]. The samples were 

then extracted twice with hexane containing 0.01 % BHT and the combined hexane layers 

were evaporated to dryness under vacuum (AS 160 SpeedVac, Savant Instruments, 

Farmingdale, NY). The residues were reconstituted with ethyl ether and mobile phase 

(1;3; voI:vol), and 20-nl aliquots were injected into the HPLC system. 
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Retinyl acetate, retinol, a-tocopherol, a-carotene, 3-carotene, and canthaxanthin 

standards were purchased from Fluka Chemical (Ronkonkoma, NY) and lycopene 

standard from Sigma Chemical (St. Louis, MO). Cryptoxanthin was donated by 

Hofl&nann-La Roche (Nutley, NJ) and lutein by Kemin Industries (Des Moines, lA). 

Calibration curves were generated from the ratios of the peak height of the carotenoid 

standards to the peak height of the internal standard plotted against the carotenoid 

concentration. Accuracy and reproducibility of the analyses were verified using a standard 

reference material (SRM 968a, Fat-Soluble Vitamins in Human Serum) from the National 

Institute of Standards and Technology (Gaithersburg, MD). Quality control included 

routine analysis of a plasma pool. Inter-assay coeflBcients of variation were below 5% for 

all carotenoids, retinol, and a-tocopherol. 

Statistical analysis. The data were analyzed as a randomized block experiment 

with subjects considered as blocks. Plasma carotenoid concentrations at individual time 

points were regarded as repeated measures. Significant differences between treatments 

were analyzed by the general linear models procedure of SAS [27]. The area under the 

plasma concentration versus time curve (AUC) was calculated by trapezoidal 

approximation after adjustment for the baseline plasma concentrations of the carotenoids. 

Significant differences of the AUC values for single versus combined carotenoid dose 

were analyzed by paired t-test. 
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Results 

Effects of a concurrent dose of P-carotene and canthaxanthin on the kinetics of 

the individual carotenoids in plasma lipoprotein fractions. The mean canthaxanthin 

concentration-time curves in the individual lipoprotein fractions during 10 h after ingestion 

of either an individual 25 mg canthaxanthin dose plus placebo or a combined 25 mg 

canthaxanthin plus 25 mg P-carotene dose are presented in Figure 3-1. Repeated measures 

ANOVA indicated that concurrent ingestion of a P-carotene dose inhibited the appearance 

of canthaxanthin in chylomicrons (p < 0.01), VLDLA (p < 0.05), VLDLB (p < 0.05), and 

VLDLC (p < 0.01). The rapid accumulation of canthaxanthin in LDL was not affected by 

concurrent ingestion of P-carotene (p = 0.25) during the first postprandial 10 hours. Table 

3-1 gives the mean areas under the lipoprotein concentration-time curves (AUC) for 0 to 

10 h after an individual dose of P-carotene or canthaxanthin or a combined dose of P-

carotene and canthaxanthin. The AUC for canthaxanthin after concurrent ingestion of P-

carotene was reduced in chylomicrons 37.8 ± 7.1% (p < 0.01), in VLDLA 43.0 ± 8.1% (p 

< 0.05), in VLDLB 32.7 ± 8.1% (p < 0.05), and in VLDLC 30.3 ± 7.6% (p < 0.001). 

The mean P-carotene plasma lipoprotein fraction response curves after ingestion of 

either an individual 25 mg P-carotene dose plus placebo or a combined 25 mg P-carotene 

plus 25 mg canthaxanthin dose are shown in Figure 3-2. The timing of the peak 

lipoprotein P-carotene increments was not affected by concurrent ingestion of 

canthaxanthin, and the effect of concurrent canthaxanthin ingestion on P-carotene 
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Figure 3-1. Mean (± SEM, n = 5) plasma lipoprotein canthaxanthin 
increments after ingestion of either an individual 25 mg canthaxanthin 
dose plus placebo (•) or a combined 25 mg canthaxanthin plus 25 mg 
3-carotene dose (O). Lipoprotein canthaxanthin concentrations were 
adjusted by subtraction of baseline concentrations. 
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Table 3-1. Mean (± SEM) areas under the plasma lipoprotein concentration-time curves (AUC) for 0 to 10 h after an individual 
dose of P-carotene or canthaxanthin or a combined dose of P-carotene and canthaxanthin. Between and within subject comparisons 
for each of five subjects. 

Fraction 

AUC for P-Carotene 
(^mol 'h/L) 

AUC for Canthaxanthin 
(l^mol -h/L) 

Within subject 
difference 

Fraction P-Carotene 
plus Placebo 

P-Carotene plus 
Canthaxanthin 

Within subject 
difference 

Canthaxanthin 
plus Placebo 

Canthaxanthin 
plus P-Carotene 

Within subject 
difference 

Chylomicrons 0.43 ± 0.20 0.32 ±0.11 -0.12 ±0.09 0.86 ±0.15 0,55 ±0.14 -0.31 ±0.05 
VLDLA 0.66 ± 0.29 0.49 ±0.12 -0.17 ±0,17 1.20 ±0.23 0.63 ± 0.08 -0.57 ±0.19 ' 
VLDLB 0.25 ±0.10 0.22 ± 0,07 -0,03 ± 0.03 0.49 ± 0.07 0.33 ± 0.06 -0.16 ±0.04® 
VLDLC 0.13 ±0.05 0.15 ±0.05 +0.02 ±0.01 0.49 ±0.15 0,37 ±0.14 -0.12 ±0.01 " 
LDL 0.11 ± 0.08 0.08 ± 0.04 -0.04 ± 0.09 1.83 ±0.33 1.66 ±0.36 -0.17 ±0.11 

" p <  0 . 0 0 1  

* 'p<0.01 

p < 0.05 
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Figure 3-2. Mean (± SEM, n = 5) plasma lipoprotein P-carotene 
increments after ingestion of either an individual 25 mg 3-carotene dose 
plus placebo (•) or a combined 25 mg P-carotene plus 25 mg 
canthaxanthin dose (O). Lipoprotein P-carotene concentrations were 
adjusted by subtraction of baseline concentrations. 
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concentrations was not statistically significant when compared within subjects by repeated 

measures ANOVA. 

Effects of a concurrent dose of fi-carotene and canthaxanthin on the kinetics of 

the individual carotenoids in plasma. Figure 3-3 presents the postprandial plasma 

appearance of P-carotene and canthaxanthin during the first 10 h after ingestion of 

individual doses or a combined dose. The appearance of canthaxanthin was significantly 

inhibited by concurrent ingestion of P-carotene, whereas the effect of concurrent ingestion 

on the appearance of P-carotene was not significant. Shown in Figure 3-4 are the mean 

plasma canthaxanthin concentration-time curves for 528 hours after ingestion of either a 

single oral 25 mg canthaxanthin dose or a combined 25 mg canthaxanthin plus 25 mg P-

carotene dose. The data are mean values for nine subjects adjusted by subtraction of 

baseline canthaxanthin concentrations. The plasma canthaxanthin response curve is 

monophasic; canthaxanthin concentrations increased rapidly and peaked 8-12 hours post-

dosing after which plasma concentrations declined steadily to reach values near baseline 

concentrations at 360 h. 

Repeated measure ANOVA across the individual time points indicated that 

ingestion of a concurrent P-carotene dose inhibited the appearance of canthaxanthin 

significantly (p < 0.01). 

The AUCs for individual subjects for a single dose of P-carotene or canthaxanthin 

and for a combined dose of P-carotene plus canthaxanthin for 0 to 96 h post-dosing are 

shown in Table 3-2. We present the AUCs for 0 to 96 h and ignore the AUCs for 192 to 
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^ 1.50 - # Canthaxanthin increment (single dose) 
—O— Canthaxanthin increment (combined dose) 
T p-Carotene increment (single dose) 

—A— p-Carotene increment (combined dose)! 

1.00 -

9 0.50 
O 

0.00 

2 4 6 8 

TIME POST-DOSING (h) 

10 

Figure 3-3. Mean (± SEM, n = 9) plasma carotenoid concentration-time curves for 10 h 
after ingestion of either a single oral dose of 25 mg of canthaxanthin or 3-carotene or a 
combined dose of 25 mg each of canthaxanthin and P-carotene. 
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-O- Canthaxanthin plus placebo 
Canthaxanthin plus p-carotene 

1.00 

S 0.50 

< 0.00 

0 2 4 6 8 10 12 24 96 192 528 48 72 

TIME POST-DOSING (h) 

Figure 3-4. Mean (± SEM, n = 9) plasma canthaxanthin concentration-time curves for 528 h after ingestion of either 25 
mg of canthaxanthin plus placebo or 25 mg each of P-carotene and canthaxanthin. Note the changes in the time scale 
between 12 and 24 h and between 96 and 192 h which are indicated by a dashed line. 
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Table 3-2. Within-subject comparison of the areas under the plasma concentration-time curves (AUG) for 0 to 96 h after an 
individual dose of P-carotene or canthaxanthin or a combined dose of P-carotene and canthaxanthin. 

Area Under Curve (nmol« h/L) 
Subject p-Carotene P-Carotene with Within Canthaxanthin Canthaxanthin Within 

alone canthaxanthin subject 
difference 

alone with P-carotene subject 
difference 

1 36.2 40.4 +4.2 98.1 87.1 -11.0 
2 113.0 90.0 -23.0 79.9 76.9 -3.1 
3 149.0 96.1 -52.6 79.4 65.8 -13.6 
4 2.6 26.7 +24.1 46.4 32.2 -14.2 
5 23,1 34.3 +11.1 51.1 38.5 -12.6 
6 47.9 12.4 -35.5 62.4 53.2 -9.2 
7 34.6 57.7 +23.1 78.2 77.0 -1.2 
8 102.0 53.0 -49.3 71.4 63.1 -8.3 
9 65.0 46.3 -18.7 73.0 69.6 -3.4 

Mean ± SEM 63.7 ± 16.0 50.819.2 -13.0 ±9.9 71.1 ±5.3 62.6 ± 6.1 -8.5 ± 1.6 
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528 h because the subjects were on the controlled diet until 96 h post-dosing. Comparison 

within subjects by repeated measures ANOVA indicated that the effect of canthaxanthin 

on the p-carotene AUG was not statistically significant, whereas the reduction in mean 

canthaxanthin AUC was significant (p < 0.01). 

Shown in Figure 3-5 are the mean plasma (J-carotene concentration-time curves 

for 528 hours after ingestion of either an individual 25 mg 3-carotene dose plus placebo or 

a combined dose of 25 mg P-carotene plus 25 mg canthaxanthin. The presented 

concentrations are mean values for nine subjects adjusted by subtraction of baseline 3-

carotene concentrations. The curve has biphasic kinetics with a minor peak at 5 h post-

dosing after which the plasma concentrations fell and then increased with a major peak at 

48 h post-dosing. The plasma P-carotene concentrations then declined slowly to values 

near baseline concentrations at 528 h. 

The kinetics of 3-carotene plasma appearance and disappearance after ingestion of 

an oral p-carotene dose were not consistently affected by concurrent ingestion of 

canthaxanthin. Although the magnitude of the mean plasma response to a combined 3-

carotene and canthaxanthin dose is reduced in the composite response curve (Figure 3-5) 

relative to the response to an individual 3-carotene dose, the reduction in plasma 3-

carotene concentrations across all time points after ingestion of an equimolar dose of 3-

carotene and canthaxanthin was not statistically significant when compared within 

subjects. The composite curve is the mean response curve of all subjects, the statistical 

comparison of the treatments was within subjects. 
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Figure 3-5. Mean (± SEM, n = 9) plasma P-carotene concentration-time curves for 528 h after ingestion of either 25 
mg of P-carotene plus placebo or 25 mg each of P-carotene and canthaxanthin. Plasma P-carotene concentrations were 
adjusted by subtraction of baseline plasma concentrations. Note the changes in the time scale between 12 and 24 h and 
between 96 and 192 h which are indicated by a dashed line. 
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The effect of combined dosing on the plasma appearance of P-carotene is more 

accurately presented by the within subject comparison in Table 3-2. The subjects showed 

extensive variation in response to the coinciding dose; five of nine subjects had reduced 

plasma P-carotene increments after ingestion of the concurrent canthaxanthin dose 

whereas the remaining four subjects had increased plasma P-carotene increments 

compared to the response to the single oral P-carotene dose. The individual peak plasma 

P-carotene increments after the combined dose varied fi^om a 70% reduction to a 400% 

increase (data not shown). When calculating the within subject ratios of the peak plasma 

P-carotene increments after ingestion of an individual or combined dose (P-carotene: P-

carotene plus canthaxanthin), the mean effect of the combined P-carotene and 

canthaxanthin dose was a 27% increase in peak increment compared with the individual P-

carotene dose. 

The kinetics of single oral doses of P-carotene and canthaxanthin in plasma are 

distinct. Canthaxanthin has a monophasic response with a single peak concentration 

occurring 8 to 12 h post-dosing, whereas P-carotene has a biphasic response with a minor 

peak concentration at 5 h post-dosing and a larger sustained peak at 48 h post-dosing. We 

discussed the kinetics of P-carotene and canthaxanthin in plasma and plasma lipoprotein 

fi-actions in an earlier paper. Our findings are in agreement with previous reports on the 

kinetics of P-carotene [17, 28] and canthaxanthin [17, 29]. 
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Discussion 

The mechanism and site of the apparent interactions of P-carotene and 

oxycarotenoids are not known. In the present study we investigated the effect of 

coinciding ingestion of 3-carotene and canthaxanthin on their incorporation into transport 

lipoproteins. We demonstrated that coincident ingestion of the P-carotene dose 

significantly inhibited the appearance of the canthaxanthin dose in chylomicrons and in 

VLDL subfi-actions, but not the rapid accumulation of canthaxanthin in LDL. In contrast, 

the kinetics and appearance of p-carotene in the lipoprotein firactions were not consistently 

affected by ingestion of canthaxanthin. 

The pilot study for the current study [17] indicated that coincident ingestion of an 

equimolar dose of P-carotene and canthaxanthin reduced the peak serum concentration of 

canthaxanthin by 39% compared to the value for canthaxanthin when administered in 

absence of P-carotene. The appearance of P-carotene in plasma after an oral dose was not 

antagonized by concurrent ingestion of an equimolar canthaxanthin dose. The inhibition 

occurred early during the postprandial phase suggesting an interaction of the carotenoids 

during intestinal absorption. 

Our findings support the hypothesis that one site of interaction of P-carotene and 

canthaxanthin is within the enterocyte or during micellar solubilization in the lumen. It 

appears that the incorporation of canthaxanthin into TRL is reduced in presence of p-

carotene. The rapid accumulation of the canthaxanthin dose in LDL is not affected by the 

P-carotene dose. There are two possible explanations for this observation. One, a 
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hypothetical transfer of canthaxanthin from TRL to LDL which occurs at the same rate as 

when administered in a single oral dose. Two, incorporation of canthaxanthin into 

intestinal or hepatic VLDL particles which are subsequently converted to LDL particles, 

and that this incorporation is not affected by the presence of 3-carotene in the enterocyte. 

The first possibility is supported by Borel et ai.[30] who showed that oxycarotenoids are 

preferentially solubilized in phospholipids, i.e. at the surface of lipoproteins, rendering 

them prone to transfer among lipoproteins and to accumulate in lipoproteins with a high 

phospholipid:apolar lipid ratio, such as LDL or HDL. 

The second hypothesis is supported by the finding that the small intestine is 

capable of secreting VLDL particles; however, their contribution to postprandial influx of 

intestinal lipoproteins is considered insignificant [31], It is unlikely that intestinal VLDL is 

responsible for the rapid accumulation of canthaxanthin in LDL because we observed that 

coincident ingestion of 3-carotene significantly inhibited the appearance of the 

canthaxanthin dose in each VLDL subfraction, i.e. the fractions in which one would expect 

canthaxanthin to appear first before the particles were catabolized to LDL particles. 

Our data confirm the findings from the pilot study [17] that coincident ingestion of 

an oral equimolar dose of P-carotene and canthaxanthin significantly inhibits the plasma 

appearance of canthaxanthin, but not that of P-carotene. Individual peak plasma 

canthaxanthin increments after the combined dose varied from 36% reduction to 

essentially no change relative to an individual canthaxanthin dose. Eight of nine subjects 

showed reduced peak plasma canthaxanthin concentration, only one subject showed 

essentially unchanged plasma appearance of canthaxanthin after ingestion of the combined 
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dose compared with ingestion of the single dose. The effect of combined dosing on peak 

plasma P-carotene concentration showed extensive variation across subjects ranging from 

a 70% reduction to a fourfold increase relative to ingestion of the single dose. For five of 

nine subjects the peak plasma concentrations were reduced, whereas, for the remaining 

four subjects, the peak plasma P-carotene increments were enhanced after ingestion of the 

combined dose. 

We observed enhanced appearance of intact p-carotene after ingestion of a 

combined dose of P-carotene and canthaxanthin in subjects who had low AUC values for a 

single oral p-carotene dose. Subjects with low absorption of P-carotene may be efficient 

converters of P-carotene to retinoids [32]. The enhanced absorption of the P-carotene 

dose when ingested coincident with an equimolar canthaxanthin dose may be due to 

interaction of canthaxanthin with P-carotene-15,15'-dioxygenase, the enzyme responsible 

for the conversion of P-carotene into retinoids in the enterocyte. Ershov et al [33] 

demonstrated that the nonprovitamin A carotenoids, lutein and lycopene, can form 

enzyme-pseudosubstrate complexes and inhibit the enzyme so that less P-carotene is 

converted to retinoids and more is absorbed intact. 

Our findings are similar to those of Kostic et al. [18]. It was demonstrated that 

concurrent administration of an equimolar dose of P-carotene and lutein inhibits the 

appearance of lutein in serum as shown by a reduction of the mean area under the curve 

(AUC) for lutein by 39% compared to its value when given alone. In their study, seven of 

eight subjects showed this effect, one subject showed a 15% increase in lutein absorption 
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in presence of P-carotene. In contrast, the effect of lutein on the P-carotene response 

showed broad interindividual variation; for five of eight subjects, the absorption of P-

carotene was reduced after ingestion of the combined dose compared with a single oral p-

carotene dose, three subjects showed enhanced P-carotene absorption in presence of 

lutein. Subjects with low P-carotene absorption after a single oral dose of P-carotene 

showed enhanced absorption of p-carotene with concurrent ingestion of lutein. 

The observed interrelations of carotenoids in humans may be confined to 

occurrence between hydrocarbon carotenes and oxycarotenoids [17]. Johnson et al. [20] 

were not able to demonstrate an effect of a combined oral dose of P-carotene and 

lycopene, two hydrocarbon carotenes, on the serum response of the two. Our data confirm 

and extend earlier reports on the interference of P-carotene with intestinal absorption of 

oxycarotenoids during coincident ingestion. Here we demonstrate antagonistic effects of a 

coincident P-carotene dose on the appearance of an equimolar canthaxanthin dose in TRL, 

but not in LDL. Canthaxanthin did not have a consistent effect on the intestinal absorption 

of P-carotene. If canthaxanthin and P-carotene share a common transport mechanism 

through the cytosol to the endoplasmic reticulimi of the enterocyte for incorporation into 

intestinal lipoproteins, it is possible that this transport mechanism has a higher affinity for 

P-carotene. The nature of the interactions among carotenoids deserves further research, 

especially in the light of health protective effects of carotenoids other than P-carotene. In 

recent epidemiological studies [2, 5, 6], lutein intakes were more strongly associated with 

risk of lung cancer than P-carotene intakes. If the intestinal absorption of other protective 
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agents is inhibited by supplemental P-carotene the long-term effect may be detrimental 

rather than beneficial. 
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4. GENERAL CONCLUSIONS 

As provitamin A, p-carotene is present in a variety of vitamin supplements 

available over the counter in the United States, and, as a colorant, is found in various 

foods. In recent years, P-carotene has made the news as a potential health protective 

agent. Findings from recent large intervention trials are not consistent with a protective 

effect of supplemental P-carotene. It is crucial to understand the metabolism of a purified 

compound and its interaction with other nutrients if the compound is ingested as a 

supplement. Foods contain a variety of carotenoids other than P-carotene which may exert 

potential protective effects to human health. If P-carotene interferes with the utilization of 

other carotenoids, especially oxycarotenoids, supplementation with P-carotene may have 

detrimental effects on human health. 

We investigated the intestinal absorption and the lipoprotein transport of single 

equimolar oral P-carotene and canthaxanthin doses, as well as those of a combined P-

carotene and canthaxanthin dose in healthy premenopausal women to confirm and extend 

the findings of a pilot study. We compared treatment effects within subjects, i.e. each 

subject served as her own control. The kinetics of P-carotene, a hydrocarbon carotene, 

and canthaxanthin, a model oxycarotenoid, in plasma were determined to be distinct. 

Canthaxanthin concentrations in plasma increased rapidly after ingestion of an oral dose 

and peaked 12 hours post-dosing, whereas the appearance of P-carotene in plasma was 

biphasic with a lesser peak 5 hours post-dosing and a larger sustained peak 48 hours post-
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dosing. Canthaxanthin appears to be a good model for other oxycarotenoids, lutein and 

cryptoxanthin, which also show rapid appearance and monophasic kinetics in human 

serum after ingestion. 

Underlying these distinct kinetics is the transport of the investigated carotenoids in 

plasma lipoproteins. The early rise in P-carotene concentrations in plasma was determined 

to be due to influx of P-carotene transported in chylomicrons and VLDL; the latter was 

thought by other investigators to represent VUDL contamination by chylomicron 

remnants, however, we did not detect apo-B48, the integral apolipoprotein of 

chylomicrons and chylomicron renmants. Chylomicrons and VLDL particles are 

catabolized by lipoprotein lipase in the circulation and the remnant particles are cleared by 

the liver, thus upon their removal, plasma P-carotene concentrations decreased. The 

second p-carotene peak was due to delayed appearance in LDL particles. It is likely that 

hepatocytes secreted nascent VLDL particles containing P-carotene which were 

subsequently catabolized to LDL. We observed that the concentration of ingested p-

carotene in LDL began to rise 6 hours post-dosing after concentrations in TRL had 

peaked. In contrast, canthaxanthin concentrations rose concurrently in all lipoprotein 

fractions after ingestion of a single oral dose. Interesting was the rapid accumulation of the 

oxycarotenoid, canthaxanthin, in LDL. For the first time, we have demonstrated that the 

coincident appearance of canthaxanthin in TRL and LDL explains the monophasic 

canthaxanthin response in plasma after an oral dose of canthaxanthin and likely that of 

other oxycarotenoids prominent in the human diet. 
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Our findings indicate that P-carotene and canthaxantMn interact when ingested 

together in one oral dose. The plasma appearance of canthaxanthin was significantly 

inhibited by coincident ingestion of 3-carotene. We observed a mean within-subject 

reduction in the area under the plasma canthaxanthin concentration-time curve (AUC) of 

8.5% which was statistically significant. The antagonistic effect of the p-carotene dose on 

the absorption of the canthaxanthin dose was more marked in individual lipoprotein 

enactions during the immediate postprandial period. The reduction in the lipoprotein 

canthaxanthin AUC for 0 to 10 h after concurrent ingestion of P-carotene and 

canthaxanthin was significant in TRL but not in LDL. The reduction in AUC values for 

canthaxanthin in TRL subfi-actions ranged fi-om 30.3 ± 7.6% to 43.0 ± 8.1% compared 

with the AUC after an individual canthaxanthin dose. The rapid accumulation of 

canthaxanthin in LDL was not affected by coincident ingestion of the P-carotene dose. 

One possible explanation for this observation is transfer of the oxycarotenoid fi^om TRL to 

LDL and that the transfer rate is not affected by coincident ingestion of P-carotene. 

We did not observe a statistically significant effect of concurrent ingestion of the 

canthaxanthin dose on the appearance of the P-carotene dose in either plasma or plasma 

lipoproteins. It is important to note that, in contrast to the canthaxanthin response, the 

subjects varied in their plasma P-carotene response after ingestion of the combined P-

carotene plus canthaxanthin dose. Of nine subjects, five showed a reduced plasma 

appearance of the P-carotene dose when ingested concurrently with canthaxanthin, and the 

remaining four showed an enhanced plasma P-carotene increment. Subjects with AUC 
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values for P-carotene after a single oral dose below 86 ^unol/L-h showed enhanced 

absorption of P-carotene in presence of canthaxanthin, whereas subjects with AUC values 

above 86 jomol/L'h showed reduced absorption of p-carotene when ingested 

coincidentally with canthaxanthin. These findings are consistent with a study by Kostic et 

al. investigating effects of a combined equimolar dose of P-carotene and lutein. The 

interaction may be limited to inhibition of intestinal cleavage of P-carotene. 

This study confirms and extends earlier reports of specific interactions of P-

carotene and the oxycarotenoids, canthaxanthin and lutein, during intestinal absorption. 

These findings have potential health implication if P-carotene supplementation interferes 

with the utilization of other potentially beneficial dietary carotenoids. 
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APPENDIX 

Table I. Recipe for 1-10 % linear gradient gel. 

Acn-lamide 1.5 M SDS Glvcerol E)eionized TEMED Ammonium 
(30%) Tris-HCL (10%) Water Persulfate (10%) 

1% 0.54 ml 4.0 ml 0.16 ml 11.22 ml 6.0 nl 80 tU 

1 0 %  5.33 ml 4.0 ml 0.16 ml 6.46 ml — 6.0 |il 48^1 

For the coomassie blue staining, the gel was immersed in stain overnight in a 

closed container to prevent evaporation. The staining solution contained 0.1% coomassie 

blue R-250, 47.5% methanol, 5.0% acetic acid, and 47.5% deionized water. The solution 

was stirred to dissolve all components and then filtered (Whatman #1 paper). The 

destaining solution contained 7.5% acetic acid, 5.0% methanol, and 87.5% deionized 

water. The gel was immersed in the destaining solution until the background on the gel 

was clear. 



www.manaraa.com

Table II. Within-subject comparison of the areas under the chylomicron carotenoid concentration-time curves (AUG) 
after an individual dose of either p-carotene or canthaxanthin or a combined dose of P-carotene and canthaxanthin. 

Mean AUG ± SEM for P-Garotene Mean AUG ± SEM for Ganthaxanthin 
in Ghylomicron (|amol/L*h) in Ghylomicron (|imol/L*h) 

Subject P-Garotene plus P-Garotene plus Difference Ganthaxanthin Ganthaxanthin Difference 
Placebo Ganthaxanthin (%) plus Placebo plus 3-Garotene (%) 

1 1.16 0.70 -39.9 1.09 0.67 -38.3 
2 0.25 0.14 -45.0 0.65 0.28 -56.1 
3 0.06 0.17 +192.0 0.74 0.37 -50.6 
4 0.50 0.40 -19.2 1.33 1.05 -20.7 
5 0.21 0.17 -17.5 0.51 0.39 -23.1 

Table III. Within-subject comparison of the areas under the VLDLA carotenoid concentration-time curves (AUG) after an 
individual dose of either P-carotene or canthaxanthin or a combined dose of P-carotene and canthaxanthin. 

Mean AUG ± SEM for P-Garotene Mean AUG ± SEM for Ganthaxanthin 
in VLDLA (ymol/L-h) in VLDLA (nmol/L*h) 

Subject p-Garotene plus p-Garotene plus Difference Ganthaxanthin Ganthaxanthin Difference 
Placebo Ganthaxanthin (%) plus Placebo plus P-Garotene (%) 

1 1.76 0.94 -46.5 1.95 0.72 -63.1 
2 0.32 0.26 -18.8 0.77 0.43 -44.4 
3 0.10 0.35 +247.0 1.08 0.50 -53.4 
4 0.69 0.48 -30.3 1.47 0.89 -39.6 
5 0.43 0.43 -0.4 0.73 0.62 -14.8 
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Table IV. Within-subject comparison of the areas under the VLDLB carotenoid concentration-time curves (AUC) after an 
individual dose of either P-carotene or canthaxanthin or a combined dose of P-carotene and canthaxanthin. 

Mean AUC ± SEM for P-Carotene Mean AUC ± SEM for Canthaxanthin 
in VLDLB (|imol/L'h) in VLDLB (|imol/L'h) 

Subject P-Carotene plus p-Carotene plus Difference Canthaxanthin Canthaxanthin Difterence 
Placebo Canthaxanthin (%) plus Placebo plus P-Carotene (%) 

1 0.57 0.45 -20.4 0,56 0.33 -41.4 
2 0.07 0.04 -37.9 0.28 0.16 -41.1 
3 0.02 0.11 +386.0 0.53 0.25 -53.0' 
4 0.26 0.21 -15.6 0.66 0.53 -19.4 
5 0.31 0.23 -27.6 0.43 0.39 -8.7 

to lO 

Table V. Within-subject comparison of the areas under the VLDLC carotenoid concentration-time curves (AUC) after an 
individual dose of either p-carotene or canthaxanthin or a combined dose of p-carotene and canthaxanthin. 

Mean AUC ± SEM for p-Carotene Mean AUC ± SEM for Canthaxanthin 
in VLDLC (umol/L-h) in VLDLC (nmol/L'h) 

Subject P-Carotene plus P-Carotene plus Difference Canthaxanthin Canthaxanthin Difference 
Placebo Canthaxanthin (%) plus Placebo plus P-Carotene (%) 

1 0.30 'na na 0.22 na na 
2 0.06 0.04 -31.2 0.22 0.12 -45,5 
3 0.03 0.08 + 142.0 0.31 0.18 -41.2 
4 0.21 0.22 +2.0 0.87 0.72 -16.5 
5 0.24 0.26 +8.4 0.57 0.47 -18.1 

not available 
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Table VI. Within-subject comparison of the areas under the LDL carotenoid concentration-time curves (AUC) after an 
individual dose of either P-carotene or canthaxanthin or a combined dose of P-carotene and canthaxanthin. 

Mean AUC ± SEM for P-Carotene Mean AUC ± SEM for Canthaxanthin 
in LDL (nmol/L'h) in LDL (nmol/L'h) 

Subject P-Carotene plus P-Carotene plus Difference Canthaxanthin Canthaxanthin Difference 
Placebo Canthaxanthin (%) plus Placebo plus P-Carotene (%) 

1 029 'na NA NA NA NA 
2 0.11 0,09 -21,6 1.74 1.24 -28.6 
3 -0.09 0.06 +168.0 1.00 0.97 -2.4 
4 0.16 0.17 +10.5 2.01 1.88 -6.7 
5 028 -OOl -104.0 2,58 2,57 -0.7 

' not available 
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Table VII. Plasma P-carotene increments (fimol/L) after ingestion of a P-carotene plus placebo dose (trt A) and after a P-carotene plus 

canthaxanthin dose (trt C). 

HOUR 
1 2 3 4 5 

HOUR |)-C(trtA) p-C (trt C) p-c (trt A) p-C (trtC) p-c (trt A) P-C (trt C) p-c (trt A) P-C (trt C) p-c (trt A) P-C (trtC) 

0 0 0 0 0 0 0 0 0 0 0 

1 -0.0147 -0.0598 -0.135 -0.1009 -0.1068 -0.0973 -0.1542 -0.0911 -0.0971 -0.0859 

2 -0.0149 -0.0073 -0.1284 -0.0711 -0.0427 -0.1161 -0.1426 -0.0681 -0.0759 -0.0679 

3 0.0416 0.0920 0.0153 -0.0080 0.2067 •0.0381 -0.1186 -0.0281 0.0167 0.0144 

4 0.1356 0.2288 0.1323 0.0987 0.3957 0.0725 -0.097 0.0312 0,0212 0.0068 

5 0.4946 0.4915 0.2701 0.2675 0.5619 0.2043 0.0200 0.1997 0.1352 0.0968 

6 0.4076 0.3923 0.2412 0.3212 0.4847 0.2452 -0.0139 0.1527 0,1625 0.1274 

7 0.2884 0.2446 0.2479 0.2487 0.2955 0.2372 -0.0134 0.1326 0.1277 0,1633 

8 0.2759 0.2690 0.3529 0.3195 0.3786 0.2324 -0.0252 0.1287 0.1430 0.1286 

9 0.2016 0.1972 0.3231 0.3048 0.5142 0.3356 -0.0315 0.1302 0.1211 0.1193 

10 0.2632 0.3144 0.4731 0.4364 0.7838 0.5840 -0.0055 0,1644 0.1147 0.1392 

11 0.3529 0.4601 1.0093 0.5544 1.2410 0.7978 0.0266 0.2187 0,1761 0.2601 

12 0.3831 0.4082 0.8715 0.6756 1.3010 0.8318 0.0065 0.2215 0,1661 0.2127 

24 0.4357 0.5340 1.5119 1.1765 1.7779 1.2334 0.0897 0.3982 0,3238 0.4257 

48 0.4468 0.4536 1.5176 1.1176 1.8856 1.2220 0.0508 0.3196 0,3135 0.4575 

72 0.3854 0.4277 1.2191 - 1.7253 1.1121 0.0241 0.3027 0,2489 0.3915 

96 0.2918 0.3628 0.9664 0.732 1.4123 0.8382 -0.0275 0.1823 0,1571 0.3272 

192 0.1601 0.1824 0.3940 0.2315 0.7906 0.4691 -0.0794 0.0611 0.1241 — 

360 0.1635 0.1826 0.2364 -0.0065 0.3743 0.3701 0.0184 -0.0165 0.1087 0,0436 

528 " 0.0841 0.1161 " 0.2399 0.1495 -0.0750 -0.0979 0.1095 -0,0110 
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()-C(trtA) p-C(trtC) p-C(trtA) P-C(trtC) p-C(trtA) p-C(trtC) fi-C(trtA) p-C(trtC) p-C(trtA) p-C(trtC) 

0 0 0 0 0 0 0 0 0 0 

-0.1283 -0.1386 -0.1111 -0.1156 -0.0985 -0.1009 0.1168 0.0134 -0.1419 -0.1517 

-0.0878 -0.1338 -0.0642 -0.0609 -0.0395 -0.0864 0.0605 -0.00627 -0.0835 -0.1124 

0.0217 -0.1087 0.0005 -0.0313 0.0054 •0.0495 0.1003 0.00384 0.0015 •0.0820 

0.1513 -0.0782 0.1767 0.0276 0.1021 0.1264 0.1589 0.0449 0.2304 0.1569 

0.1834 0.1240 0.4175 0.0601 0.5366 0.5646 0.3712 0.1296 0.4185 0.4075 

0.0763 0.0632 0.3960 0.1523 0.3086 0.2812 0.3806 0.1618 0.3103 0.2358 

0.0225 0.0795 0.3927 0.2084 0.2568 0.3207 0.3443 0.1233 0.2707 0.2041 

0.0726 0.1647 0.4193 0.1708 0.3058 0.3545 0.4755 0.1961 0.3606 0.1904 

0.0657 0.1695 0.3122 0.1430 0.3066 0.2678 0.4809 0.2166 0.3508 0.1812 

0.1173 0.2597 0.4336 0.2125 0.3647 0.3843 0.5967 0,2793 0.4529 0.2512 

0.1607 0.4550 0.4906 0.1511 0.3794 0.4406 0.6138 0.4424 0.6806 0.4770 

0.2980 0.4462 0.4667 0.1304 0.3692 0.3946 0.6045 0.3617 0.6355 0.4366 

0.6666 1.0080 0.6037 0.1819 0.4680 0.7222 1.1927 0.6400 0.7570 0.6028 

0.7346 0.9741 0.5573 0.1589 0.3966 0.7444 1.3519 0.6612 0.8557 0.6022 

0.6035 0.8119 0.5325 0.1115 0.3673 0.6458 1.1893 0.6587 0.7065 0.4967 

0.4940 0.6573 • 0.4153 0.0703 0.2482 0.5191 1.0165 0.4881 0.5744 0.3738 

0.2157 0.3029 0.1867 0.0667 0.1286 0.2137 0.6153 0.3272 0.1586 0.1693 

0.0978 0.1252 0.1286 0.0559 0.0390 0.0555 0.3304 0.2005 0.0203 ~ 

0.0167 -0.0045 0.0160 0.0135 -0.0222 0.0489 0.1386 0.1413 0.0024 0.0381 
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Table VIII. Plasma canthaxanthin increments (^mol/L) after ingestion of canthaxanthin plus placebo dose (trt B) and ailer a P-carotene 

plus canthaxanthin dose (trt C). 

HOUR 
1 2 3 4 5 

HOUR CX (trt B) CX (trt C) CX (trt B) CX (trtC) CX (trtB) CX (trtC) CX (trt B) CX (trtC) CX (trt B) CX (trtC) 

0 0 0 0 0 0 0 0 0 0 0 

1 -0.0264 •0.0254 -0.0316 -0.0421 -0.0394 -0.0273 -0.0321 -0.0326 -0.0314 -0.0313 

2 0.0902 0.0572 -0.0110 -0.0222 -0.0240 -0.0230 -0.0013 0.0087 -0.0109 -0.0088 

3 0.3700 0.3547 0.1117 0.1051 0.0629 0.0417 0.1469 0.093 0.1030 0.1064 

4 0.6581 0.6748 0.5002 0.3098 0.2588 0.1480 0.3331 0.2051 0.2254 0.1921 

5 1.3299 1.0825 0.8441 0.6412 0.4828 0.3351 0.6370 0.4066 0.4909 0.3438 

6 1.3694 1.3991 1.2978 1.0777 0.6539 0.5183 0.7545 0.5289 0.7516 0.5219 

7 1.5835 1.3947 1.5871 1.1367 0.8622 0.6594 0.9370 0.6348 0.9653 0.6082 

8 1.7245 1.6102 1.6729 1.4143 0.8610 0.7783 1.0375 0.6401 1.1188 0.6638 

9 1.7766 1.4464 1.6262 1.4493 0.8655 0.9020 0.9840 0.6834 1.1342 0.7039 

10 1.8383 1.5456 1.6435 1.5060 0.9119 0.9672 0.9418 0.6363 1.0586 0.6441 

11 2.0292 1.7872 1.7261 1.6821 1.0616 1.2230 1.0635 0.6481 1.0989 0.7875 

12 2.0401 1.7262 1.7543 1.7873 1.2240 1.2982 0.9773 0.6754 1.0369 0.7775 

24 1.5586 1.2741 1.3054 1.3579 1.3110 1.1064 0.6977 0.5092 0.7589 0.6189 

48 0.8977 0.8530 0.7692 0.7243 0.8931 0.6910 0.4719 0.3096 0.5101 0.3731 

72 0.6765 0.6274 0.4848 - 0.6351 0.4629 0.2943 0.2133 0.3536 0.2624 

96 0.5243 0.5081 0.3315 0.2905 0.4378 0.3544 0.1952 0.1409 0.2575 0.2086 

192 0.2104 0.1933 0.0542 0.0534 0.1798 0.1207 0.0630 0.0310 0.0757 ~ 

360 0.0735 0.0723 0.0153 0.0193 0.0396 0.0669 -0.0010 -0.0143 - -0.0009 

528 - 0.0163 -0.0139 ~ 0.0617 -0.0056 0.0046 -0.0270 -0.0273 -0.0206 
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CX (trt B) CX (trt C) CX (trt B) CX (trtC) CX (trt B) CX (trtC) CX (trt B) CX (trt C) CX (trt B) CX(trtC) 

0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000 0.0000 0.0000 

-0.0222 0.0000 -0.0263 -0.0375 -0.02611 -0.0200 -0.0295 -0.0329 -0.0330 •0.0308 

-0.0222 0.0033 0.0483 0.0421 0.1029 0.0498 -0.0087 -0.0132 0.00723 0.0113 

0.0312 0.0378 0.1815 0.1798 0.3563 0.1483 0.0787 0.0601 0.1339 0.0682 

0.1150 0.0890 0.2934 0.3414 0.7182 0.3950 0.3133 0.1767 0.4497 0.4346 

0.1939 0.2450 0.4828 0.4282 1.3128 0.9629 0.6300 0.3924 0.7724 0.8879 

0.1992 0.3133 0.6096 0.7546 1.4950 1.1459 0.9394 0.5788 0.9626 0.8806 

0.2210 0.3885 0.6464 1.0279 1.4464 1.3987 1.0417 0.7044 1.0000 1.0158 

0.3152 0.4969 0.7652 1.0934 1.5429 1.5084 1.3180 0.9701 1.2343 1.0882 

0.3742 0.5585 0.8090 1.1083 1.4449 1.4473 1.3980 1.0365 1.2955 1.1615 

0.5406 0.6256 0.9124 1.2261 1.4321 1.3817 1.4096 1.0827 1.3646 1,1983 

0.9350 1.0793 1.2735 1.1490 1.3433 1.4658 1.5284 1.2798 1.4891 1.4568 

1.1559 0.9204 1.3390 1.1657 1.4710 1.4138 1.3104 1.2694 1.5633 1,3992 

0.8457 0.9464 0.9448 0.8096 1.0981 1.1359 1.1330 1.0361 1.1941 1.1641 

0.5603 0.5696 0.6828 0.5173 0.7771 0.7858 0.6849 0.6250 0.7425 0.6895 

0.3810 0.3585 0.4228 0.3472 0.5668 0.5492 0.5258 0.4582 0.4580 0.4530 

0.2915 0.2748 0.3421 0.2495 0.4570 0.4524 0.4017 0.3289 0.3249 0,3283 

0.0801 0.0910 0.1406 0.1069 0.1372 0.1736 0.1619 0.1211 0.0572 0.0972 

-0.0032 0.0225 0.0263 0.0216 0.0421 0.0535 0.0366 0.0112 0.0088 ... 

-0.0182 0.0000 -0.0133 -0.0170 0.0079 0.0055 0.00281 -0.0266 -0.0257 -0.0095 
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Table IX. Lipoprotein P-carotene increments (|imol/L) after ingestion of a P-carotene plus placebo dose (trtA) and 

3 5 4 1 2 
0-C (trt A) p-C (trt C) p-C (trt A) 3-C (trt C) fi-C (trtA) &-C(trtC) p.C(trtA)P-C(trtC) 0-C (trtA) 6-C (trtC)l 

Chylo 0 0 0 
2 0.04388 0 
4 0.19866 0.07651 
6 0.14894 0.12697 
8 0.10507 0.08012 

10 0.17158 0.13305 

0 0 
0 0 

0.02842 0.01974 
0.05588 0.02959 
0.0372 0.01438 

0.00265 0.00768 

0 0 
0 0 

0.00562 0.02028 
0.02194 0.03884 
0.00109 0.02138 

0 0.00651 

0 0 
0.01884 0 
0.07108 0.06493 
0.09983 0.07752 
0.04689 0.03998 
0.02635 0.03903 

0 0 
0 0 

0.01901 0.01134 
0.01904 0.04078 
0.04033 0.02004 
0.04916 0.02551 

VLDLA 0 0 0 
2 0.07141 0 
4 0.23805 0.11403 
6 0.27796 0.17484 
8 0.15633 0.10733 

10 0.2757 0.15134 

0 0 
0 0 

0.03996 0.03391 
0.06809 0.06 
0.04502 0.02946 
0.01358 0.01274 

0 0 
0 0.00667 

0.00766 0.0399 
0.02826 0.07909 
0.01206 0.03896 
0.00587 0.02384 

0 0 
0.03326 0.02296 
0.06727 0.06644 
0.17467 0.11804 
0.05576 0.01669 
0.03021 0.03427 

0 0 
0 0 

0.03554 0.07215 
0.07114 0.09679 
0.07885 0.02716 
0.05915 0.03618 

VLDLB 0 0 0 
2 0 0 
4 0.06122 0.04846 
6 0.10328 0.06356 
8 0.07906 0.0737 

10 0.08224 0.08168 

0 0 
0 0 

0.00667 0.00219 
0.01558 0.01138 
0.0111 0.00677 

0.00345 0.00294 

0 0 
0 0 
0 0.0075 

0.00649 0.02482 
0.00394 0.01631 
0.00194 0.01356 

0 0 
0.00604 0.00767 
0.01275 0.02723 
0.06025 0.0505 
0.03994 0.01828 
0.02169 0.0119 

0 0 
0 0 

0.04839 0.0311 
0,04384 0.04843 
0.04424 0.02477 
0.03819 0.01646 

VLDLC 0 0 lost 
2 0 lost 
4 0.03139 lost 
6 0.04869 lost 
8 0.04466 lost 

10 0.04792 lost 

0 0 
0 0 

0.00399 0.00223 
0.00999 0.00578 
0.00934 0.0069 
0.00878 0.00828 

0 0 
0 0.0021 

0.00117 0.00406 
0.00839 0.01566 
0.00487 0.01133 
0.00331 0.01158 

0 0 
0.00065 0.00452 
0.00633 0.01127 
0.03892 0.04988 
0.04076 0.03063 
0.03658 0.02135 

0 0 
0 0,00174 

0,02656 0.02351 
0.04301 0.04786 
0.03032 0.04194 
0.03939 0,02926 

LDL 0 0 lost 
2 -0.00831 lost 
4 0.00019 lost 
6 0.02164 lost 
8 0.06819 lost 

10 0.12731 lost 

0 0 
0.00361 -0.0048 

-0.02133 0.00005 
0.00144 0.00353 
0.04556 0.02553 
0.05364 0.03936 

0 0 
-0.01738 -0.00754 
-0.01595 -0.00374 
-0.02065 0.0045 
0.00234 0.01808 
0.0118 0.03986 

0 0 
0.00109 -0.00536 
0.01276 -0.00941 
0.00193 0.00975 
0.02481 0.04843 
0.07588 0.08682 

0 0 
-0.01159 -0.04022 
-0.00468 -0.04916 
0.02384 -0.00015 
0.07025 0.04468 
0.11966 0.07956 
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Table X. Lipoprotein canthaxanthin increments (|imol/L) afler ingestion of a canthaxanthin plus placebo dose (trt B) 

and afler a canthaxanthin plus f -carotene dose (trt C). 
3 s 4 1 2 

CX(trtB) CX(tilC) ox (trt B) CX(trtC) OX (trt B) OX (trt C) OX (trt B) OX (trt 0) CX(trtB) CX(trtC) 
Chyle 0 0 0 

2 0 0 
4 0.14144 0.0643 
6 0.23588 0.13206 
8 0.1222 0.08063 

10 0.09378 0.12056 

0 0 
0.00429 0.00294 
0.06162 0.03965 
0.12523 0.05565 
0.11487 0.03459 
0.03414 0.01804 

0 0 
0.00751 0.01016 
0.09524 0.04405 
0.1294 0.06837 

0.11681 0.05039 
0.04432 0.0209 

0 0 
0.04211 0.01654 
0.16532 0.15807 
0.22717 0.18079 
0.16079 0.12266 
0.13526 0.09604 

0 0 
0.00229 0.0036 
0.0576 0.0261 

0.11808 0.08562 
0.05743 0.05809 
0.0389 0.04508 

VLDLA 0 0 0 
2 0.00574 0 
4 0.12811 0.06634 
6 0.35963 0.13395 
8 0.33134 0.09829 

10 0.30518 0.12472 

0 0 
0.00755 0.00651 
0.05272 0.03972 
0.14161 0.0822 
0.15049 0.06627 
0.06175 0.03692 

0 0 
0.0125 0.01317 

0.10356 0.05111 
0.1625 0.09129 

0.19925 0.07244 
0.12298 0.04687 

0 0 
0.04737 0.02954 
0.19777 0.10957 
0.24363 0.19572 
0.19213 0.06352 
0.10673 0.09098 

0 0 
0.00486 0.00587 
0.12534 0.06322 
0.1426 0.13756 

0.05831 0.07029 
0.06637 0,06675 

VLDLB 0 0 0 
2 0 0 
4 0.02461 0.00634 
6 0.08157 0.03844 
8 0.11327 0.07189 

10 0.12346 0.09618 

0 0 
0.00276 0.00271 
0.01304 0.00954 
0.03852 0.027 
0.06238 0.03025 
0.0453 0.02509 

0 0 
0.00524 0.00391 
0.02745 0.01475 
0.07637 0.03722 
0.10471 0.04723 
0.1059 0.04424 

0 0 
0.00857 0.00854 
0.04653 0.04469 
0.10875 0.10083 
0.13806 0.08527 
0.05708 0.05395 

0 0 
0.00243 0.00274 
0.04112 0.02856 
0.08507 0.07014 
0.05456 0.06909 
0.05979 0.04813 

VLDLC 0 0 lost 
2 0 lost 
4 0 lost 
6 0.02217 lost 
8 0.05827 lost 

10 0.05968 lost 

0 0 
0.00083 0.00047 
0.00684 0.00422 
0.0254 0.01606 

0.05085 0.02481 
0.05391 0.02982 

0 0 
0.00148 0.00156 
0.01074 0.00713 
0.04051 0.02735 
0.06627 0.03707 
0.07353 0.0369 

0 0 
0.00423 0.00474 
0.03845 0.0258 
0.10789 0.11763 
0.1888 0.14917 

0.18656 0.12763 

0 0 
0.00176 0.00135 
0.02401 0.01899 
0.08655 0.06679 
0.13085 0.10646 
0.08793 0.08345 

LDL 0 lost lost 
2 lost lost 
4 lost lost 
6 lost lost 
8 lost tost 

10 lost lost 

0 0 
0.0029 0.00457 

0.05232 0.05536 
0.21183 0.17007 
0.37538 0.24691 
0.4574 0.29067 

0 0 
0.00324 0.00273 
0.03501 0.03922 
0.1429 0.14165 

0.20303 0.19473 
0.22971 0.21707 

0 0 
0.00589 0.00435 
0.09233 0.08275 
0.26683 0.25502 
0.39343 0.37367 
0.49309 0.44448 

0 0 
0.00167 -0.00059 
0.09252 0.0823 
0.36032 0.35705 
0.53638 0.53516 
0.60114 0.61735 
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